
Information Systems 120 (2024) 102316

A
0
n

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

CoCo-trie: Data-aware compression and indexing of strings✩

Antonio Boffa ∗, Paolo Ferragina, Francesco Tosoni, Giorgio Vinciguerra
Department of Computer Science, University of Pisa, L.go B. Pontecorvo 3, Pisa 56127, PI, Italy

A R T I C L E I N F O

Recommended by Dennis Shasha

Dataset link: https://github.com/aboffa/CoCo-t
rie

Keywords:
String dictionaries
Tries
Data compression
Succinct data structures
Key-value stores

A B S T R A C T

We address the problem of compressing and indexing a sorted dictionary of strings to support efficient lookups
and more sophisticated operations, such as prefix, predecessor, and range searches. This problem occurs as
a key task in a plethora of applications, and thus it has been deeply investigated in the literature since the
introduction of tries in the ’60s.

We introduce a new data structure, called the COmpressed COllapsed Trie (CoCo-trie), that hinges on a
pool of techniques to compress subtries (of arbitrary depth) into succinctly-encoded and efficiently-searchable
trie macro-nodes with a possibly large fan-out. Then, we observe that the choice of the subtries to compress
depends on the trie structure and its edge labels. Hence, we develop a data-aware optimisation approach
that selects the best subtries to compress via the above pool of succinct encodings, with the overall goal of
minimising the total space occupancy and still achieving efficient query time. We also investigate some variants
of this approach that induce interesting space–time trade-offs in the CoCo-trie design.

Our experimental evaluation on six diverse and large datasets (representing URLs, XML data, DNA and
protein sequences, database records, and search-engine dictionaries) shows that the space–time performance of
well-established and highly-engineered data structures solving this problem is very input-sensitive. Conversely,
our CoCo-trie provides a robust and uniform improvement over all competitors for half of the datasets, and it
results on the Pareto space–time frontier for the others, thus offering new competitive trade-offs.
1. Introduction

Big data constitute a key production factor in the current digital
economy. Governments and tech companies are now stipulating ambi-
tious digital agendas aimed at overcoming the limitations of currently-
known methods and technologies. These raise new challenges in the
design of several modern software systems, such as next-generation
green and edge computing platforms, massive key–value and media
stores, high-performance networks and storage, search engines, big-
data analytic tools, etc. In this paper, we concentrate on string dic-
tionaries, which do undoubtedly constitute a core component of a
plethora of big-data applications such as search engines [1–3], RDF and
key–value stores [4–6], scalable distributed storage systems [7], com-
putational biology tools [8,9], and 𝑛-gram language models [10,11],
just to mention a few.

Let  be a sorted set of 𝑛 variable-length strings 𝑠1, 𝑠2,… , 𝑠𝑛 drawn
from an alphabet 𝛴 = {1, 2,… , 𝜎}. The string dictionary problem
consists of storing  in a compressed format while supporting some
key query operations. One of the most powerful is the 𝚛𝚊𝚗𝚔 operation,

✩ This is an extended version of Antonio Boffa, Paolo Ferragina, Francesco Tosoni, and Giorgio Vinciguerra. Compressed string dictionaries via data-aware
subtrie compaction. SPIRE 2022. DOI:10.1007/978-3-031-20643-6_17.
∗ Corresponding author.

E-mail addresses: antonio.boffa@phd.unipi.it (A. Boffa), paolo.ferragina@unipi.it (P. Ferragina), francesco.tosoni@phd.unipi.it (F. Tosoni),
giorgio.vinciguerra@unipi.it (G. Vinciguerra).

which returns the number of strings in  lexicographically smaller than
or equal to a pattern 𝑃 [1, 𝑝]. Some other classic operations such as
𝚕𝚘𝚘𝚔𝚞𝚙(𝑃) (returns a unique stringID for 𝑃 if 𝑃 ∈ , and −1 otherwise),
𝚊𝚌𝚌𝚎𝚜𝚜(𝑖) (returns the string in  whose stringID is 𝑖), 𝚙𝚛𝚎𝚍𝚎𝚌𝚎𝚜𝚜𝚘𝚛(𝑃)
(returns the lexicographically largest string in  smaller than 𝑃),
𝚙𝚛𝚎𝚏𝚒𝚡_𝚜𝚎𝚊𝚛𝚌𝚑(𝑃) (returns all strings in  that are prefixed by 𝑃),
and 𝚕𝚘𝚗𝚐𝚎𝚜𝚝_𝚙𝚛𝚎𝚏𝚒𝚡_𝚖𝚊𝚝𝚌𝚑(𝑃) (returns the longest prefix of 𝑃 which
is shared with one of the strings in ) can be implemented through the
𝚛𝚊𝚗𝚔 operation, possibly using compact auxiliary data structures [12].
In this paper, we assume that the set  is static, which allows for consid-
erably more space–time efficient solutions compared to a scenario with
in-place updates, as we will show in Section 5.4. Moreover, we note that
static sorted sets of strings are core components of several dynamic and
scalable key–value storage engines based on LSM-trees [13].

String dictionaries are typically approached via the trie data struc-
ture, which dates back to the ’60s [14, §6.3]. Since then, as we will
survey in Section 2, researchers have put a lot of effort into improving
vailable online 17 November 2023
306-4379/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access ar
c-nd/4.0/).

https://doi.org/10.1016/j.is.2023.102316
Received 2 November 2023; Accepted 8 November 2023
ticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://doi.org/10.1007/978-3-031-20643-6_17
mailto:antonio.boffa@phd.unipi.it
mailto:paolo.ferragina@unipi.it
mailto:francesco.tosoni@phd.unipi.it
mailto:giorgio.vinciguerra@unipi.it
https://doi.org/10.1016/j.is.2023.102316
https://doi.org/10.1016/j.is.2023.102316
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2023.102316&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Information Systems 120 (2024) 102316A. Boffa et al.

t
i
a

n
t
w

2

t
R
i
l
c
a
d
t
s

U
i
o
c
b
a
f
e
b
r
a
a
s

A
m
b
i
i
s
c
i
l

the time and space efficiency of the naïve pointer-based implemen-
tation of tries. Some of these solutions compact paths [12,15–17]
or subtrees [18–24], succinctly encode node fan-outs [25–30], apply
sophisticated string transformations [31,32] or proper disk-based lay-
outs [33–35], and some even replace the trie with learned models [36].
However, the upsurge of interest in big data, the new architectural
features of modern computers, and the demanding requirements posed
by applications and users have led to a revamped interest in this
data structure because of some clear limitations of the previous pro-
posals. One of the key issues addressed in recent results has been
the design of compressed storage schemes for tries that offer reduced
space occupancy without (much) impairing their efficient query time,
see e.g. [5,16,19,22–24,30,37–40]. These proposals are offering many
interesting space–time trade-offs over various datasets but without a
clear winner. So choosing the appropriate storage solution is still quite
a daunting task, thus requiring specific algorithm-engineering expertise
and accurate analysis of the input datasets.

1.1. Our contribution

In this paper, we tackle this long-standing problem by introducing
a fully-new approach to compress and index a sorted string dictionary.
We start from the classic trie data structure, built on the input strings,
and make the following contributions:

• We propose a compressed representation of individual subtries,
and provide a concrete motivating example to show that its
effectiveness depends on the ‘‘shape’’ of the collapsed subtrie
and its possibly long ‘‘edge labels’’ (Section 3). This shows that
approaching trie compression by collapsing its subtries in an
‘‘agnostic way’’, e.g. by statically fixing their height as done in
prior work, is not optimal.

• In light of this, we design a new approach to trie compres-
sion that hinges upon a data-aware optimisation scheme that
selects the best subtries to collapse and compress, based on a
pool of known and new succinct encodings, with the overall
goal of minimising the total space occupancy and still achieving
efficient query time. The result is a new data structure, called
CoCo-trie, which stands for COmpressed and COllapsed trie. Tech-
nically speaking, the CoCo-trie orchestrates three main tools: a
novel compressed representation for collapsed subtries, a pool of
succinct encoding schemes to compress the edge labels, and a
data-aware optimisation procedure that selects the best subtries
to collapse in order to minimise the overall occupied space while
still guaranteeing efficient queries due to the shorter trie traversal
and the efficiently-searchable encoding schemes (Section 4).

• We corroborate our theoretical results with an experimental eval-
uation on several datasets that offer different characteristics (be-
cause they are originating from a variety of sources, such as
URLs, XML data, DNA and protein sequences, database records,
and dictionaries of search engines), and comparing the CoCo-trie
against five highly-engineered state-of-the-art competitors (name-
ly, ART [29], CART [41], ctrie++ [24], FST [5], and PDT [17]).
To the best of our knowledge, this is the very first work exper-
imenting with all these implementations together, over a wide
variety of datasets. Our results show that the performance of our
competitors is very input-sensitive, in the sense that no solution
dominates the others in space and time on all the datasets. Differ-
ently, CoCo-trie turns out to be a robust, uniformly efficient, and
flexible data structure since, on half of the datasets, it improves all
experimented state-of-the-art solutions, while on the others it is
on the Pareto space–time frontier, thus offering new competitive
2

and interesting trade-offs (Section 5). o
Our contributions are significant a fortiori if one looks at them
hrough the lenses of the about sixty years of research and development
n the mature and competitive field of string dictionaries, which we
dvance both in knowledge and space–time performance.

For the sake of presentation, we summarise in Table 1 the main
otation used throughout the paper. And, as a final note, we list below
he significant new material we added to the preliminary version of this
ork that appeared in [42].

1. An extensive review of existing design techniques for represent-
ing the trie data structure, either explicitly or in compressed
form (Section 2).

2. An analysis that generalises the example based on gamma code
to the more query-efficient Elias-Fano-based code for represent-
ing the edge labels of a compacted trie (Section 4.2.1).

3. An explanation of the algorithm engineering techniques used to
implement a new version of the CoCo-trie. This new version
improves the space occupancy of the previous implementation
(by 4.9%) and is up to 20% faster (Section 5.1).

4. New experiments with novel and bigger datasets that offer new
significant insights on how the CoCo-trie and its competitors
perform in real-world scenarios (Section 5.2.1).

5. An extended discussion about the effectiveness of our trie com-
pression and compaction strategies on the experimental perfor-
mance of the CoCo-trie (Section 5.3), including their impact on
the construction time (Section 5.3.5).

6. Novel experiments evaluating the impact of the query workload
on the time efficiency of CoCo-trie and the tested state-of-the-art
competitors (Section 5.4.1).

. Related work

String dictionaries are generally implemented via the trie data struc-
ure, which dates back (according to D. Knuth [14]) to 1959 due to
ené de la Briandais [43]. A trie, also called digital tree or prefix tree,

s a type of multi-ary search tree, with edges between nodes that are
abelled by individual characters (aka, uncompacted trie) or by multiple
haracters (aka, compacted trie). We refer to classic literature like [44]
nd [14, §6.3] for an introduction to the trie data structure. Herein, we
escribe some existing design techniques for efficiently representing the
rie either explicitly or in compressed form, and comment upon their
pace–time performance to better contextualise our contribution.

nary path compaction. This well-known technique consists in collaps-
ng any unary path into a single edge labelled by the concatenation
f the path labels so that each internal trie node gets at least two
hildren. In this way, the number of trie nodes gets upper-bounded
y the number of indexed strings rather than by their total length
s, instead, occurs in uncompacted tries. The Patricia trie [15] is a
urther evolution that retains only the first character and the length of
ach (collapsed) edge label. This needs the introduction of the so-called
lind-search algorithm [33] for lexicographically searching a pattern by
ecovering only one string of the dictionary, even if the edge labels
re represented partially via their single starting characters. However,
Patricia trie acts as an index so it does not relieve the problem of

toring the dictionary of strings in little space [49].

daptive node representations. Branching out of a node is one of the
ost time-consuming operations in the trie traversal for string search,

ecause of cache-miss effects. A central design decision when engineer-
ng a trie implementation is thus the definition of the layout of an
nternal node. In general, such a layout should handle efficiently in
pace and access time different amounts of branching characters, which
an vary greatly among nodes. The adaptive trie [19] addresses this
ssue by choosing among several, yet simple, representations of node
ayouts, from short arrays to hash tables, and up to B-trees depending

n the node fan-out. Judy [50] uses 8 bits per branching character and,

Information Systems 120 (2024) 102316A. Boffa et al.

f
n
s
t
c
n
t
t
i
b
e
B

Table 1
Summary of main notations used in the article.

Symbol Definition

 Input set of strings elements
𝑛 Number of strings in the input set 
𝑁 Number of nodes in the uncompacted trie built on the input set 
𝑤 Machine word size (in bits)
𝛴, 𝜎 Alphabet of the strings in , and its size
𝑣𝓁 Macro-node collapsing 𝓁 levels
𝑐𝑖𝑣𝓁 𝑖th integer macro-character of the collapsed macro-node 𝑣𝑙
𝑚 Number of branching macro-characters
𝑢 Universe of the branching macro-characters (𝑐𝑚𝑣𝓁 − 𝑐1𝑣𝓁 + 1)

ℎ(𝑣) Height of the subtrie rooted at node 𝑣

𝐶(𝑣𝓁) Space cost of encoding the collapsed macro-node 𝑣𝓁
𝛴𝑣𝓁 , 𝜎𝑣𝓁 Local alphabet of the symbols appearing in the edge labels of the macro-node 𝑣𝓁 , and its size
𝛼 Parameter to relax the space cost of macro-nodes, i.e. 𝐶(𝑣𝓁), thus enabling the choice of a larger 𝓁
Table 2
Datasets characteristics: number of strings in millions, dataset size in MB, average longest common prefix length, average length, maximum length, and alphabet size of the strings
in the datasets.

Name Description 𝑛∕106 Dataset size
in MB

Avg
lcp

Avg
length

Max
length

𝜎

url URLs crawled from the web [45] 233.2 9 999.9 38.3 41.8 1 921 82
dna unique 31-mers from a DNA sequence [46] 367.4 6 566.7 14.9 16.8 31 26
tpcds-id customers ids in TPC-DS-3TB [47] 30.0 476.4 13.4 14.8 15 16
trec-terms terms appearing in TREC GOV2 [48] 32.2 285.7 6.5 7.8 1 545 36
protein sequences of amino acids [46] 2.9 171.4 36.7 53.3 16 191 26
xml rows of an XML dump of dblp [46] 2.9 110.8 34.4 36.5 248 95
depending on how many children are present out of the 256 possible
branches, it uses one of several inner node layouts for representing both
the branching characters (e.g. via a sorted array, or a bitmap of size
256) and the corresponding pointers to children. Similarly, the Adap-
tive Radix Tree (ART) [29] selects among four inner node types (each
designed for handling up to 4, 16, 48, and 256 children, respectively),
and it uses SIMD instructions to efficiently find the branch to take. Our
CoCo-trie frees from the need of engineering complex node layouts and
policies to switch among them since it transforms edge labels (possibly
much longer than 1 byte) into integers, which are then compressed and
indexed via a set of proper integer encoders, from which we select the
best one in a data- and space-aware manner on a per-node basis. In
Section 5, we consider ART and its compact static version CART [5,41]
for experimental comparison against our proposal.

Fan-out compaction. Differently from the adaptive node representations
or the list of branching symbols and edges, some works suggested alter-
ative implementations for the frequent and time-consuming branching
tep in the trie traversal. For example, the ternary search tree [26],
urns an arbitrary fan-out into a ternary one: depending on how the
urrent character in the search string compares with the one in the
ode (less, equal, or greater) a different branch is taken. This makes
he branching out of a node easily manageable, but it requires storing
hree pointers per node. The double-array trie [51], instead, uses two
nteger arrays indexed by the node numbers that allow following a
ranch with a given symbol in constant time, but it does not support
fficient 𝚛𝚊𝚗𝚔 and its space is still high to require compression [52].
onsai trie [25] and its descendant 𝑚-Bonsai [30] were introduced to

exploit compact hash tables to represent the trie nodes, which makes
branching faster but loses the lexicographic order of the string that
is crucial to implement an efficient 𝚛𝚊𝚗𝚔 (and other operations that
depend on it, such as range searches). Instead, in our CoCo-trie, we
propose a fan-out compaction technique that orchestrates a sophisti-
cated and order-preserving integer encoding of edge labels together
with an optimisation strategy driven by the distribution of the edge
3

labels involved in the fan-out.
Subtrie compaction. The high-level idea here lies in representing entire
subtries via a single macro-node encoded in a proper way, e.g. packed
in a few computer words or represented via a space–time efficient data
structure, thereby achieving space compaction and a faster traversal of
the trie structure. In this sense, the LPC-trie [18] provides a valuable
example of a binary-trie implementation that compacts complete sub-
tries located at any level of the trie into single macro-nodes. The burst
trie [21] applies a similar strategy as well: it substitutes entire subtries
with small ‘‘containers’’, such as linked lists, binary search trees, and
splay trees. Its evolution, the HAT-trie [20], employs cache-conscious
hash tables [53] as containers, however, it does not support efficient
𝚛𝚊𝚗𝚔 (and other operations that depend on it, such as range searches).

The MassTree [27] uses a B-tree to index longer substrings as macro-
characters (i.e. up to 64 bits) to efficiently branch out of a trie node.
We do not experiment with Masstree because [39] shows that it uses
from 1.8 to 3× more space than ART.

More recently, other compaction schemes have been proposed,
which exploit efficient operations carried out over machine words. For
instance, the c-trie [22,23] packs 𝑤∕ log 𝜎 consecutive alphabet symbols
in a single 𝑤-bit word. Or, also, the Height Optimised Trie (HOT) [39],
whose salient algorithmic ingredient consists in packing a fixed number
of nodes of a binary Patricia trie into a ‘‘compound node’’ having a fan-
out equal to 32, which is then stored using a few memory words and
accessed via SIMD operations. We do not experiment with HOT [39]
because its implementation only supports strings whose length does
not exceed 256, while our datasets contain much longer strings (see
Table 2).

The latest solution featuring the packed approach is the dynamic
improved compact trie, or ctrie++ for short [24], a hybrid between the
packed c-trie [22] and the 𝑧-fast trie [54]. Like these two tries, the
ctrie++ gets decomposed in a macro trie that includes several micro
tries, with the latter indexing substrings with up to 𝑤∕ log 𝜎 characters.
Some traits of our solution are reminiscent of this packing strategy,
however, the number of characters indexed in our CoCo-trie is not fixed
but varies among its trie nodes, driven by a novel data-aware space-
optimisation strategy described in Section 4.2.2. In order to show the
impact of this optimisation strategy, we experimentally compare our
CoCo-trie against the ctrie++ in Section 5.

Information Systems 120 (2024) 102316A. Boffa et al.

𝜉
d
c
t
b

a

Path decomposition. This is a fairly powerful technique, introduced for
the very first time in [55], and later extended in [12] to design a
static and cache-friendly trie. The key idea consists in identifying a
‘‘good’’ root-to-leaf path, according to various strategies (e.g. enforcing
balancedness, query-awareness, etc.) and then contracting it to a node
with as many children as the subtries hanging off that path; the
procedure is then carried out recursively downwards. Notwithstanding
the increased fan-out could represent a limitation, researchers devised
proper compression techniques that made the resulting trie asymp-
totically efficient in time and space [12], dynamic [16], and very
efficient in practice too [17]. We include the extremely compact and
efficient implementation of Path Decomposed Tries (PDT) of [17] in
our experiments of Section 5.

Succinct encoding of the trie structure. Recently, numerous trie repre-
sentations making use of succinct data structures have been proposed,
achieving interesting theoretical and practical results. The Marisa trie
[28], just to mention one of them, is a static compressed Patricia
trie stored in a compressed form via the Level-Order Unary Degree
Sequence (LOUDS) representation. LOUDS encodes the trie topology
by visiting the nodes in level-wise order and appending 𝟷𝑚𝟶 to a
bitvector 𝐵, where 𝑚 is the degree of the visited node. Navigating the
trie is then possible (see [56, §8.1] for details) via 𝚛𝚊𝚗𝚔 and 𝚜𝚎𝚕𝚎𝚌𝚝

primitives on 𝐵.1 Another well-known succinct representation of trees
is the Depth-First Unary Degree Sequence (DFUDS), which, similarly
to LOUDS, encodes the trie topology in a bitvector 𝐵 but visits the
nodes in preorder. DFUDS allows implementing some operations more
efficiently than LOUDS, such as computing the subtree size or the
number of leaves to the left of a node (see [56, §8.3] for details), so that
algorithm designers choose one or the other depending on the string
queries they wish to support on the indexed dictionary.

Now, the most recent and promising solution leveraging a suc-
cinct trie-structure representation is offered by the Fast Succinct Trie
(FST) [5], which features query-efficient encoding schemes (LOUDS-
Dense) for the upper levels of the trie and space-efficient encoding
schemes (LOUDS-Sparse) for its lower levels. Because of its known
space–time efficiency, we include the FST in our experiments of Sec-
tion 5.

Burrows–Wheeler transform. The XBW [31] is a compressed indexing
approach for labelled trees, based upon the Burrows–Wheeler Trans-
form [58]. It achieves space occupancy up to their 𝑘th order entropy
and supports efficient sub-path searches. Variants of this approach [32]
have been applied to compress the Permuterm index [59] in order
to support sophisticated and time-efficient wildcard queries over a
dictionary of strings. Its reduced memory footprint makes its space
performance similar to bzip2, and better than Front Coding. The
LZ78-parsing scheme inspired other solutions too [38]. These succinct
schemes achieve entropy bounds but unfortunately result in much
slower query times compared to all the other viable solutions solving
the very same problem, and thus are not experimented in this paper.

String-adapted B-tree variants. If I/O efficiency is mandatory, the choice
turns out to be the String B-tree [33], which is a sophisticated com-
bination of B-trees with Patricia tries. Recently, it was made cache-
oblivious [34] and compressed [35] by combining in a sophisticated
way the best-known techniques in string and labelled tree compression,
as well as a proper memory layout of trees for supporting cache-
oblivious trie traversals. To the best of our knowledge, an implementa-
tion of this scheme is yet to be released; this may be due to its rather
complex structure.

1 For 𝑏 = 𝟶 or 𝟷, the 𝚛𝚊𝚗𝚔𝑏(𝑖) primitive counts the number of 𝑏-bits up to
position 𝑖, while 𝚜𝚎𝚕𝚎𝚌𝚝𝑏(𝑖) returns the position of the 𝑖th 𝑏-bit. Both operations
can be supported in (1) time using succinct auxiliary structures [57].
4

Non-trie solutions. The work of [37] contributed to this field with sim-
ple static and compressed string dictionaries based on front-coding, suc-
cinct structures, and full-text indexes [60,61]. Unfortunately enough,
these proposals do not guarantee any good asymptotic I/O and space
bounds [35]; nonetheless, they seem to be as competitive as PDT in
practice. The 𝑧-fast trie (ZFT) [54,62] is a dynamic and asymptotically-
efficient trie structure based upon the concept of fat binary search. In
our view of it, ZFT can be regarded as another ‘‘non-trie solution’’, as it
transforms a trie into a set of properly-built hash tables. This way, each
prefix search is carried out with a (fat) binary search over the length
of the searched string by leveraging those hash tables. Recently, the
work of [40] introduced another compressed string dictionary based
on a hierarchical front-coding with ideas leveraging longest common
prefixes and suffix arrays to speed up searches.

We do not experiment with the implementation provided in [37,40]
as we were unable to run these codebases due to some old software
dependencies and incompatibilities with modern compilers. We do not
experiment with ZFT as its space and lookup performance have been
shown to be dominated by ctrie++ [24], which is included in our
experiments.

To summarise, in light of this literature review, we will experiment
in Section 5 with ART [29] and its compact version CART [5,41],
ctrie++ [24], FST [5], and PDT [17], because they are either the
state of the art or they offer efficient approaches to compact trie
representations. To the best of our knowledge, this represents the very
first work experimenting with all these implementations together over
a wide variety of datasets that allow us to show the benefits and the
drawbacks of all of them.

3. A motivating example

‘‘Subtrie compaction’’ is a common technique in the design of
compressed string dictionaries hinging on the trie data structure. It has
been mainly investigated in the restricted context of either bounding
the subtrie height, to fit the branching substring into one machine
word [22–24], or in bounding the macro-node fan-out, so that more
space–time efficient data structures can be used for it [20,21,39].

In what follows, we first introduce a novel macro-node representa-
tion of a subtrie and then provide a concrete example of the impact
this technique can have on the space–time efficiency of the resulting
compressed trie.

Our technique consists of properly choosing (i) the different heights
of the subtries to collapse into macro-nodes, and (ii) the coding mech-
anism to represent the corresponding branching substrings (associated
with the collapsed edge labels). In this way, the resulting trie repre-
sentation adapts its space occupancy to the trie structure and to the
distribution of the edge labels, while still preserving efficient time
performance for the traversal operations.

The question we wish to address here is whether that adaptive choice
is necessary or not.

Consider the tries  and  of Fig. 1 built respectively on the two
sets of strings 𝑆1 = {AG,AT,CA,CC} and 𝑆2 = {AA,AC, 𝜉𝜉′, 𝜉𝜉}, where

denotes the last symbol in a (potentially large) alphabet 𝛴, and 𝜉′

enotes the symbol preceding 𝜉 in 𝛴. In , the alphabet {A,C,G,T}
onsists of just 4 symbols, so we need 2 bits to represent them. In ,
he alphabet is assumed to be 𝛴 = {A,C,… , 𝜉′, 𝜉} and its symbols can
e represented with 𝑏 = ⌈log2 |𝛴|⌉ bits.

Let us now consider two scenarios for the encoding of both tries
bove: one in which the trie  ∈ {,} succinctly encodes the

individual branching symbols; the other one in which the two levels
of  are collapsed at the root node, thereby creating a macro-root  𝑐

with branching macro-symbols of length 2 symbols. For evaluating the
space cost of encoding  and  𝑐 we consider the following succinct
scheme: for every node in level order, we store the first branching
symbol explicitly and then encode the gap between successive symbols
using some coding tool, say 𝛾-code.

Information Systems 120 (2024) 102316A. Boffa et al.

a
t

P
A
e
n
o
i

1
𝛾
b
𝛾

n
t
t

Fig. 1. Two tries  and  built on two sets of four strings: {AG,AT,CA,CC} on the left, and {AA,AC, 𝜉𝜉′ , 𝜉𝜉} on the right.  uses just four alphabet symbols, and  uses a much
larger alphabet in which 𝜉′ and 𝜉 are the last two symbols.
s
m
d
d
t
t
t

4

t
w
w
(
(
v
m
t
i
s
s
f

b

Q

Q

Q

e

Let us recall that the 𝛾-code of a positive integer 𝑥 consists of a
number of 0s equal to the number of bits minus one of the binary
representation of 𝑥, followed by that binary representation, e.g. 𝛾(6) =
𝟶𝟶 𝟷𝟷𝟶. Thus, 𝛾(𝑥) takes 2⌊log2 𝑥⌋ + 1 bits.

Fact 3.1. The succinct representation of the edge labels in the trie  takes
9 bits. Instead, the succinct representation of the edge labels in the collapsed
trie 𝑐 takes 7 bits.

Proof. The succinct representation of the edge labels in the trie  takes
3 + 3 + 3 = 9 bits. In fact, the encoding of the edge labels {A,C} of the
root is A 𝛾(C − A) = 𝟶𝟶 𝛾(𝟷) = 𝟶𝟶𝟷, then the encoding of the edge labels
{G,T} of the first node at the second level is G 𝛾(G−T) = 𝟷𝟶 𝛾(𝟷) = 𝟷𝟶𝟷,
and finally the encoding of the edge labels {A,C} (again) of the second
node at the second level is A 𝛾(C − A) = 𝟶𝟶𝟷.

If, instead, we collapse the two levels of  in the root of 𝑐 ,
this gets four children whose edge labels are {AG,AT,CA,CC}, and
their succinct representation takes 7 bits. In fact, we encode the first
branching macro-symbol as AG = 𝟶𝟶𝟷𝟶, followed by the encoding of the
other three branching macro-symbols as: 𝛾(AT−AG) = 𝛾(𝟶𝟶𝟷𝟷−𝟶𝟶𝟷𝟶) =
𝛾(𝟷) = 𝟷, 𝛾(CA − AT) = 𝛾(𝟶𝟷𝟶𝟶 − 𝟶𝟶𝟷𝟷) = 𝛾(𝟷) = 𝟷, and 𝛾(CC − CA) =
𝛾(𝟶𝟷𝟶𝟷 − 𝟶𝟷𝟶𝟶) = 𝛾(𝟷) = 𝟷.

Therefore, in terms of space occupancy, the succinct representation
of  is worse than the one of 𝑐 . This result is even more evident when
accounting for the space required to store the trie topology, simply
because  has more nodes than 𝑐 . We conclude that, in this setting,
it is better to collapse the trie as 𝑐 .

Surprisingly, one comes to the opposite conclusion with , despite
having the same topology of . Here, the larger alphabet together with
the different distribution of the edge labels changes the optimal choice.

Fact 3.2. The succinct representation of the edge labels in the trie  takes
t most 5𝑏+1 bits. Instead, the succinct representation of the edge labels in
he collapsed trie 𝑐 may take up to 6𝑏 − 1 bits.

roof. We can indeed represent the edge labels {A, 𝜉} of the root with
𝛾(|𝛴|−1) which takes at most 3𝑏−1 bits; the root gets followed by the

ncoding of the edge labels {A,C} of the first node at the second level,
amely A 𝛾(C − A) = A 𝛾(𝟷) which takes 𝑏 + 1 bits, and by the encoding
f the edge labels {𝜉′, 𝜉} of the second node at the second level, which
s 𝜉′ 𝛾(𝟷) which also takes 𝑏 + 1 bits.

Conversely, the succinct representation of 𝑐 may take up to 6𝑏 −
bits, since we encode AA with 2𝑏 bits set to 0, followed by 𝛾(AC−AA) =
(𝟷) = 𝟷, then by 𝛾(𝜉𝜉′ − AC) = 𝛾(𝟶𝟷… 𝟷𝟶𝟷) (which takes 4𝑏 − 3 bits,
ecause the 𝛾-encoded number consists of 2𝑏 − 1 bits), and finally by
(𝜉𝜉 − 𝜉𝜉′) = 𝛾(𝟷) = 𝟷. □

Hence, differently from the previous example on , here it is better
ot to collapse  because its succinct encoding takes 𝑏−2 bits less than
he one of 𝑐 , and 𝑏 can make this gap arbitrarily large, up to the point
hat the cost of representing their topology becomes negligible.
5

This example shows that there is no a priori best choice about which
ubtrie to collapse, thus opening a significant deal of possible improve-
ents to the known trie representations. In particular, the ‘‘best’’ choice
epends upon several features, such as the trie structure, the number of
istinct branching symbols at each node and their distribution among
he trie edges. Consequently, designing a principled approach to finding
hat ‘‘best’’ choice for each individual trie node is a quite complex task,
hat we rigorously investigate throughout the rest of the paper.

. CoCo-trie: Compressed collapsed trie

The simplest and most used approach to collapsing tries is to obtain
he trie 𝓁 by collapsing 𝓁 levels of the subtries rooted at the nodes
hose distances from the root of  are multiple of 𝓁 [22–24]. In this
ay, one can seek for a pattern 𝑃 [1, 𝑝] over 𝓁 by traversing at most 𝑝∕𝓁

macro-)nodes and by executing 𝑝∕𝓁 branches over (macro-)characters
e.g., 𝓁 is the number of characters that fit into a RAM word). Ob-
iously, increasing 𝓁 reduces the number of branching steps, but it
ay increase (i) the computational cost of each individual step, given

hat the number and the length of the branching (macro-)characters
ncrease; and, (ii) the space occupancy of the overall trie, given that
hared paths within the collapsed subtries are turned into distinct sub-
trings by macro-characters (see e.g. the paths ‘‘e$’’ and ‘‘es’’ descending
rom 𝑣 in Fig. 2, which share ‘‘e’’).

In order to address in a principled way the above issues, we start
y dealing with three main questions:

1: Can we tackle in an algorithmic way the issues (i) and (ii) above
as 𝓁 increases?

2: How does the choice about the number 𝓁 of levels to collapse
depend on the dictionary of strings?

3: Should the choice of 𝓁 be global, and thus unique to the entire trie,
or should it be local, and thus vary among trie nodes?

These questions admit surprising answers in theory, which have
qually-surprising impacts in practice. In particular, we will:

• answer Q1 affirmatively, by resorting to a pool of succinct en-
coding schemes for compressing the possibly long edge labels
(i.e., branching macro-characters);

• show for Q2 that the choice for 𝓁 has to account for the topology
and edge labelling of the trie  , and thus the characteristics of its
indexed strings;

• show for Q3 that one has to find locally, i.e., node by node, the
best value of 𝓁, via a suitably-designed optimisation procedure
aimed at minimising the overall space occupancy of the resulting
collapsed trie.

Information Systems 120 (2024) 102316A. Boffa et al.

s
w
(
e
p
w
o
c
(
e
(
o
w
m
(

4

a
T
f

D
𝓁
i
b
t
𝑣
a

c

w

𝑖

i
F
t

t
a

a
c
u
t

Fig. 2. Collapsing 𝓁 = 2 levels of the subtrie rooted at 𝑣.
d
t

i
t
t
e
i

c

𝐶

o
(

i
r
(
o
c

l
𝑐
u

4

r
a
a

4

a
c
s

s
𝑚
𝓁
i

Our algorithmic answer to all these questions consists of six main
teps, whose final result will be our CoCo-trie data structure. Firstly,
e introduce a novel compressed encoding for the collapsed subtries

Section 4.1). Secondly, we provide an optimisation procedure that
fficiently chooses the subtries to collapse within the trie  and com-
ress each of them by that compressed encoding (Section 4.2). Thirdly,
e empower the previous optimisation procedure by defining a pool
f compressed encodings, thus driving the choice of the subtries to
ollapse also in terms of the best compression scheme for each of them
Section 4.3). Fourthly, we introduce a further compression step that
xploits the local alphabet of the edge labels in the collapsed subtries
Section 4.4). Fifthly, we show how to introduce some flexibility in
ur data-aware optimisation procedure by trading space occupancy
ith query time (Section 4.5). And lastly, we describe how to imple-
ent the 𝚛𝚊𝚗𝚔 operation over the resulting compressed trie structure

Section 4.6).

.1. Compressed encoding of collapsed subtries

Let us be given a trie  whose edges are drawn from an integer
lphabet 𝛴 = {0,… , 𝜎 − 1} and sorted increasingly at each node.
he special character 0 (indicated with $) is the string terminator. We
ormalise the notion of collapsed subtries as follows.

efinition 4.1. Given an internal node 𝑣 of a trie  and an integer
≥ 1, the collapsing of 𝓁 levels of the subtrie of  rooted at 𝑣 consists

n replacing this subtrie with a macro-node 𝑣𝓁 such that (i) the edges
ranching out of 𝑣𝓁 are labelled with substrings which correspond to
he paths of length 𝓁 descending from 𝑣 in  , and (ii) the children of
𝓁 are the nodes at distance 𝓁 from 𝑣 in  . If the branching substrings
re shorter than 𝓁, we pad them with the character $.

This is depicted in Fig. 2, where five paths of length 𝓁 = 2 are
ollapsed to form the five branching edges {at, e$, es, is, os} of 𝑣𝓁 .

To encode a string 𝑠 branching out of 𝑣𝓁 , we initially right-pad it
ith 𝓁 − |𝑠| characters $, if |𝑠| < 𝓁; then, we assign it the integer

𝑛𝑡𝓁(𝑠) =
𝓁
∑

𝑖=1
𝑠[𝑖] ⋅ 𝜎𝓁−𝑖. (1)

Intuitively, we model every branching macro-character of 𝑣𝓁 as an
nteger 𝑖𝑛𝑡𝓁(𝑠) drawn from the integer alphabet 𝛴𝓁 = {0,… , 𝜎𝓁 − 1}.
urthermore, we observe that 𝑖𝑛𝑡𝓁 is monotonic, in the sense that, given
wo strings 𝑠′ and 𝑠′′ such that 𝑠′ is lexicographically smaller than 𝑠′′,

then 𝑖𝑛𝑡𝓁(𝑠′) < 𝑖𝑛𝑡𝓁(𝑠′′). This is an important property because we want
o support lexicographic searches over the CoCo-trie, and thus properly
nswer the 𝚛𝚊𝚗𝚔 operation.

Now, suppose that 𝑣𝓁 has 𝑚 branching macro-characters, which
re represented as integers 𝑐1𝑣𝓁 ,… , 𝑐𝑚𝑣𝓁 by the 𝑖𝑛𝑡𝓁 function above. Our
ompression scheme explicitly encodes the first macro-character 𝑥 = 𝑐1𝑣𝓁
sing a fixed-size representation, taking log 𝜎𝓁 bits,2 and represents
he other 𝑚 − 1 macro-characters by encoding the sequence 𝑐𝑖𝑣𝓁 − 𝑥

2 We omit ceilings for the sake of simplicity.
6

e

for 𝑖 = 2,… , 𝑚 with Elias-Fano (EF) [63,64], which takes (𝑚 − 1)(2 +
log 𝑢

𝑚−1) bits, where 𝑢 = 𝑐𝑚𝑣𝓁 −𝑐1𝑣𝓁 is the universe size of the sequence. To
ecompress the EF sequence, we also need to store some small metadata
aking log log 𝑢

𝑚 ≤ log log 𝜎𝓁

𝑚 bits.
Crucially, the speed of the 𝚛𝚊𝚗𝚔 operation (which we will discuss

n Section 4.6) depends on the ability to perform efficient searches on
he compressed sequence of macro-character, which is indeed one of
he reasons we use EF. Notice that other efficiently-searchable integer
ncoding schemes could be used in place of EF or along with it, and
ndeed we do so in Section 4.3.

Summing up, the space occupancy in bits of the collapsed and
ompressed macro-node 𝑣𝓁 is (excluding EF’s metadata)

(𝑣𝓁) = log 𝜎𝓁 + (𝑚 − 1)
(

2 + log 𝑢
𝑚 − 1

)

+ 2, (2)

where the first term corresponds to the space taken by the first macro-
character, the second term accounts for the space needed to store the
(𝑚−1) EF-coded integers, and the last 2 bits account for the contribution
f the node 𝑣𝓁 to the space required by a succinct trie representation
we use LOUDS, see Section 2).

We underline that the subtraction of 𝑥 has a subtle, yet paramount,
mpact on the space occupancy of our trie representation. It indeed
emoves any possible redundancy given by the longest common prefix
shortly, lcp) among the substrings labelling the edges branching out
f 𝑣𝓁 . For instance, if we have 𝓁 = 2 and the four branching macro-
haracters {ha,he,hi,ho}, then our encoding scheme stores 𝑥 = 𝑖𝑛𝑡𝓁(ha)

explicitly as the integer equal to h⋅𝜎1+a⋅𝜎0, and it encodes the following
three branching macro-characters {he,hi,ho} as the difference with 𝑥.
For example, it encodes ‘‘he’’ as 𝑖𝑛𝑡𝓁(he) = (h ⋅ 𝜎1 + e ⋅ 𝜎0) − 𝑥 =
(h ⋅ 𝜎1 + e ⋅ 𝜎0) − (h ⋅ 𝜎1 + a ⋅ 𝜎0) = e − a. So our encoding scheme stores
the lcp ‘‘h’’ only once in 𝑥, thereby getting rid of much redundancy in
the edge labels, and saving a big deal of space, especially when 𝓁 gets
onger. As a matter of fact, we are reducing the value of the integers
𝑖
𝑣𝓁

, which are upper-bounded by 𝜎𝓁 , to the values 𝑐𝑖𝑣𝓁 − 𝑐1𝑣𝓁 , which are
pper-bounded by 𝜎𝓁−|𝑙𝑐𝑝|.

.2. On the choice of the subtries to collapse

Given the above compressed encoding of collapsed tries, we are
eady to answer questions Q2 and Q3 of Section 4 about the choice
nd the number of levels of the subtries to collapse, which may vary
mong all trie nodes.

.2.1. CoCo-trie with the Elias-Fano code: an analysis
First of all, we need to generalise the discussion of Section 3

bout the simple 𝛾-code, to the case of the more query-efficient, yet
ompressed, EF-based encoding we have introduced in the previous
ection.

We consider the special situation of a trie  (𝑚) with a very regular
tructure, in which each internal node has got exactly 𝑚 children, with
≤ 𝜎. We will show that, on such a regular trie, the optimal choice of
depends on the parameters 𝑚 and 𝜎. On a generic trie, the situation

s even more complicated, because 𝑚 and 𝜎 may significantly vary at

ach internal node. As such, we will conclude that the optimal choice

Information Systems 120 (2024) 102316A. Boffa et al.

b

I
f

E
t

e
v

of 𝓁 cannot be global; hence, we will need to design an optimiser that
systematically determines the value of 𝓁 locally at each trie node, with
the goal of minimising the global space occupancy of the whole trie
(see Section 4.2.2).

Now, given  (𝑚), we notice that we do not need to store its topology.
Thus, collapsing a subtrie of height 𝓁 yields a macro-node whose
representation takes a number of bits upper-bounded by

𝐵𝑚(𝓁) = log 𝜎𝓁 +
(

𝑚𝓁 − 1
)

(

2 + log 𝜎𝓁

𝑚𝓁 − 1

)

, (3)

where we used Eq. (2), the fact that 𝑢 ≤ 𝜎𝓁 and that the number of
ranching macro-characters is 𝑚𝓁 .

For a given 𝑚, we can study the behaviour of 𝐵𝑚(𝓁) and thereby
define an optimisation procedure that determines which value of 𝓁
minimises the space occupancy of the compressed trie representation.
Now, under the above-mentioned assumptions, by compacting 𝓁 ≥ 1
levels we are actually compacting 𝑁𝑚(𝓁) = 1 + 𝑚 + 𝑚2 + ⋯ + 𝑚𝓁−1 =
(𝑚𝓁 −1)∕(𝑚−1) nodes of  (𝑚); in fact, at the 𝑘th level of  (𝑚) there are
exactly 𝑚𝑘 nodes. We can hence infer that each node of  (𝑚) accounts
for a 1∕𝑁𝑚(𝓁) fraction of a macro-node’s space cost. Consequently, we
can upper-bound the space for the compacted representation of each
node in  (𝑚) as

𝛿𝑚(𝓁) =
𝐵𝑚(𝓁)
𝑁𝑚(𝓁)

= (𝑚 − 1)
(

2 +
log 𝜎𝓁

𝑚𝓁 − 1
+ log 𝜎𝓁

𝑚𝓁 − 1

)

. (4)

t goes without saying that a space optimiser should choose the value
or 𝓁 which minimises 𝛿𝑚(𝓁).

xample. Let us fix 𝜎 = 16 and consider the 16 different regular
ries  (𝑚) in which each internal node has got exactly 𝑚 children, for
𝑚 = 1, 2,… , 16. Let us also assume that these tries are very deep. For
ach of these tries, we want to minimise Eq. (4) and determine the
alue of 𝓁 for which the compaction of  (𝑚) is space-optimal.

The case 𝑚 = 1 is not interesting, since the trie degenerates to
a simple unary path, for which every 𝓁 is equally space-optimal. Let
us thus draw our attention to the case of 𝑚 > 1. For a given fan-out
𝑚 = 2, 3,… , 𝜎, we need to determine the value of 𝓁 ≥ 1 that minimises
𝛿𝑚(𝓁). For 𝜎 = 16, by numerical simulation is easy to get convinced
that whenever 2 ≤ 𝑚 ≤ 11 the function 𝛿𝑚(𝓁) admits a global minimum
at 𝓁 = 1. Conversely, for 12 ≤ 𝑚 ≤ 15 the function 𝛿𝑚(𝓁) admits a
global minimum at 𝓁 = 2. Lastly, for 𝑚 = 16 we have that 𝛿16(𝓁) is
a monotonically-decreasing function: this means that the greater 𝓁 is,
the lower the cost for representing the regular trie. This latter is not a
surprising outcome, since balanced tries with the maximum admissible
fan-out (𝑚 = 𝜎 = 16) are extremely easy to compress: the optimal
choice is to compact the whole trie (all levels, 𝓁 = +∞) into a single
macro-node. Hence, for a trie whose alphabet size is 𝜎 = 16, we have

arg min
𝓁

𝛿𝑚(𝓁) =

⎧

⎪

⎨

⎪

⎩

1 if 2 ≤ 𝑚 ≤ 11
2 if 12 ≤ 𝑚 ≤ 15
+∞ if 𝑚 = 16

Summing up, we have shown that for each different (regular) trie  (𝑚)

a possibly different optimal 𝓁 does exist, but finding its best value is
a non-trivial task, as 𝓁 depends on different parameters, including the
alphabet dimension 𝜎 and the node fan-out 𝑚. □

4.2.2. Our optimisation approach
We now get down to the details of our data-aware optimisation

scheme that, given an input a generic trie  , identifies which subtries
of  to collapse (and for which height 𝓁 each one), in order to minimise
the space occupancy of its resulting representation.

Our algorithm performs a post-order traversal of  , starting from
the root. Let ℎ(𝑣) denote the height of the subtrie rooted at 𝑣 (and
reaching its descending leaves in ). For each node 𝑣, the algorithm
evaluates the cost of encoding the entire subtrie descending from 𝑣
7

by taking into account the space cost 𝐶(𝑣𝓁) of Eq. (2) referring to
the subtrie of 𝑣 limited to height 𝓁, plus the optimal space cost 𝐶∗(𝑑)
of encoding recursively the entire subtries hanging from the nodes 𝑑
descending from 𝑣 at distance 𝓁. We vary 𝓁 = 1,… , ℎ(𝑣), thereby de-
termining the minimum space occupancy 𝐶∗(𝑣). Formally, if 𝑑𝑒𝑠𝑐(𝑣,𝓁)
is the set of descendants of 𝑣 at distance 𝓁 in  (recall that 𝓁 ≤ ℎ(𝑣)),
we have

𝐶∗(𝑣) = min
𝓁=1,…,ℎ(𝑣)

{

𝐶(𝑣𝓁) +
∑

𝑑∈𝑑𝑒𝑠𝑐(𝑣,𝓁)
𝐶∗(𝑑)

}

. (5)

Note that, if 𝑣 is a leaf, we simply set 𝐶∗(𝑣) = 𝐶(𝑣1) = 2, because a leaf
cannot be further collapsed and its cost in the LOUDS representation
is 2 bits. Clearly, because of the post-order visit, the values 𝐶∗(𝑑) are
available whenever we compute 𝐶∗(𝑣).

When the root of  is eventually visited, the topology and the
encoding of all (macro-)nodes of our CoCo-trie have already been fully
determined. Thus, we know which subtries to collapse and for which
height 𝓁, which may vary from one subtrie to another. By Eq. (5), the
resulting data structure is the space-optimal one using the encoding
scheme described in Section 4.1.

The following result estimates the space–time efficiency of this
optimisation approach.

Theorem 1. The CoCo-trie of a given input trie  of height ℎ and 𝑁
nodes can be computed in (𝑁ℎ) time and (𝑁) space.

Proof. Starting from a node 𝑣 of height ℎ(𝑣), we can compute 𝐶(𝑣𝓁)
for any 𝓁 = 1, 2,… , ℎ(𝑣) by obtaining incrementally all the optimi-
sation parameters 𝑢𝓁 (universe) and 𝑚𝓁 (branching) from the already
(inductively) known 𝑢𝓁−1 and 𝑚𝓁−1.

To compute the universe size 𝑢𝓁 for 𝑣𝓁 we need to determine the
𝑖𝑛𝑡𝓁-code of the leftmost and rightmost length-𝓁 substrings descending
from 𝑣, and these can be computed by extending the respective 𝑖𝑛𝑡𝓁−1-
codes computed at the previous step with one character, in constant
time. This costs overall (𝑁ℎ) time because, for each node, we have to
visit the leftmost and rightmost branching substrings that are of length
at most ℎ.

To compute 𝑚𝓁 (i.e. the number of children of the collapsed macro-
node 𝑣𝓁), we need to visit once the whole subtrie rooted at 𝑣. Knowing
𝑚𝓁−1, we add to it the number of leaves at the 𝓁th level. Performing for
every node 𝑣 a complete visit of its whole subtrie costs overall (𝑁ℎ)
time: indeed, each of the 𝑁 nodes has at most ℎ different ancestors and
thus belongs to at most ℎ different subtries, thereby getting visited at
most ℎ times.

For every node 𝑣 we maintain just the optimal 𝐶∗-cost, thus the
required space amounts to (𝑁).

We finally remark that in the above optimisation scheme we can fix
a constant upper-bound to the maximum number 𝓁 of collapsed levels
so that the above time cost becomes (𝑁). This is actually the approach
we take in our experimental section, where we bound 𝓁 for each node 𝑣
by setting ℎ(𝑣) = 𝑤∕ log 𝜎 in Eq. (5), where 𝑤 is the RAM word size in
bits (see also Section 4.4). This feature may remind similar mechanisms
adopted in ctrie [22,23] and ctrie++ [24], where a subtrie is packed
into a machine word. However, our optimisation scheme provides more
flexibility and thus it is more powerful because the height of the subtrie
to collapse is not chosen in advance and equal over the whole trie, but
it is adaptively chosen on a per-node basis and in a data-aware manner
according to the subtrie topology and the distribution of its edge labels.
Additionally, the height of the subtrie to collapse can also be tailored
to the specific characters appearing in the subtrie rather than to the
characters appearing in the whole trie (global alphabet), as we will see
in Section 4.4.

4.3. A pool of succinct encoding schemes

Thus far, we represented the 𝑚 − 1 integers 𝑐𝑖𝑣𝓁 representing the

branching macro-characters of a macro-node 𝑣𝓁 via the EF-encoding of

Information Systems 120 (2024) 102316A. Boffa et al.

b
i
a
i

i
t
e
s
a
a
S
w
t
b

t
i
u
b
e
a
a
𝚛

r
u
g
(
m

t
𝛾
e
b
s

4

r
a
f
𝛴
l

e
h

o

p
w
t
c
t
a

4

o
t
a
m
o
i
i
n
s
r
t

t
i
o
v
n
a
w

4

m
w
i
a
i
w
t

t
t
t
t
𝑖
𝑐
t
𝓁
d
p
e
t

i
n
e
𝑐
𝑣

c
t
𝑖

the increasing sequence 𝑐𝑖𝑣𝓁 −𝑥, for 𝑖 = 2,… , 𝑚, where 𝑥 = 𝑐1𝑣𝓁 is the first
ranching character we stored explicitly. This sequence of 𝑚−1 integers
s drawn from a universe of size 𝑢 = 𝑐𝑚𝑣𝓁 − 𝑐1𝑣𝓁 + 1. Depending on 𝑚, 𝑢
nd the values of the branching macro-characters, it may be beneficial
n time, in space, or both, to resort to other kinds of encodings.

On the grounds of this observation and inspired by the hybrid
nteger-encoding literature [65–69], we now equip the CoCo-trie op-
imisation algorithm of the previous section with an assortment of
ncoding mechanisms so that the compressed representation of every
ingle node can be chosen in a data-aware manner from them. This
mounts to redefining the bit cost 𝐶(𝑣𝓁) of storing the macro-node 𝑣𝓁 so
s to consider the cost in bits of other compression schemes besides EF.
pecifically, when evaluating 𝐶(𝑣𝓁) during the traversal (see Eq. (5)),
e select the compression scheme that gives the minimum bit-represen-

ation size for all collapsed subtries descending from 𝑣 and return that
it size as the result for 𝐶(𝑣𝓁).

For our experimental study in Section 5, alongside EF, we adopt as
he pool of integer encoders for the macro-characters: packed encod-
ng (PA), characteristic bitvectors (BV), and dense encoding (DE). PA
ses log 𝑢 bits for each 𝑐𝑖𝑣𝓁 , for a total of (𝑚 − 1) log 𝑢 bits. BV uses 𝑢
its initially set to 0, and then sets to 1 the 𝑚−1 bits corresponding to
ach 𝑐𝑖𝑣𝓁 . DE comes into use whenever 𝑢 = 𝑚 − 1, i.e. for representing
sequence of consecutive increasing integers. These encoding schemes

llow us to implement the predecessor search easily, as needed by the
𝚊𝚗𝚔 operation in our CoCo-trie (see Section 4.6).

As a desideratum, we require that the bit size of the representation
esulting from any of the deployed encoding schemes should be eval-
ated in constant time by means of the sole parameters 𝑚 and 𝑢 of a
iven node, both of which are readily available during the tree traversal
see the proof of Theorem 1). All the aforementioned encoding schemes
eet this requirement.

This notwithstanding, one could employ other compression schemes
hat do not have a closed-form expression for their bit size (e.g. the
-codes of the differences between macro-characters as in Section 3)
ither by running them and measuring the actual space occupancy or
y using upper bounds for it (see e.g. [56, §2.9]). In this case, the cost
tated in Theorem 1 should be re-evaluated, and could be larger.

.4. Squeezing the universe of the macro-characters

We now describe an additional step to further decrease the space
equired by the compression of the macro-characters by means of
n alphabet-aware encoding. The idea lies in replacing the encoding
unction 𝑖𝑛𝑡𝓁 defined in Eq. (1) and depending on the global alphabet

of the whole trie, with a new one that depends on the size of the
ocal alphabet of the branching edges of the macro-node 𝑣𝓁 .

Specifically, let 𝛴𝑣𝓁 ⊆ 𝛴 be the alphabet of symbols occurring in the
dge labels of the collapsed macro-node 𝑣𝓁 . For example, in Fig. 2 we
ave 𝛴 = {$, a, e,h, i,n, o, s, t} and 𝛴𝑣𝓁 = 𝛴⧵{h,n}. By changing 𝜎 = |𝛴|

in Eq. (1) with 𝜎𝑣𝓁 = |𝛴𝑣𝓁 |, we can squeeze the size of the universe
f the branching macro-characters of 𝑣𝓁 from 𝜎𝓁 to 𝜎𝓁𝑣𝓁 . This, in turn,

reduces the magnitude and the distance between consecutive integers
associated with the branching macro-characters and thus allows a more
effective compression. Also, we reduce the first term of Eq. (2) to
log 𝜎𝓁𝑣𝓁 .

Clearly, each macro-node 𝑣𝓁 adopting this optimisation must store a
mapping between 𝛴 and the local alphabet 𝛴𝑣𝓁 , which is implemented
with a bitvector 𝐵[0, 𝜎 − 1] where 𝐵[𝑖] = 1 if symbol 𝑖 appears in
𝛴𝑣𝓁 [70]. In practice, 𝜎 is typically small (e.g. 256 for 8-bit ASCII al-
phabets) so that rank/select operations over 𝐵 can be executed without
additional space via a few bit-manipulation instructions (see e.g. [71,
§3.2]).

Of course, this optimisation requires modifying 𝐶(𝑣𝓁) to account
for both the more efficient macro-characters representation due to the
8

squeezed universe and the size of the alphabet mapping (i.e. 𝜎 bits). i
Overall, the time complexity for building the CoCo-trie becomes
(𝑁ℎ2) since we cannot compute 𝑢𝓁 incrementally as described in the
roof of Theorem 1; the space complexity instead does not change, as
e do not store the bitmaps 𝐵𝓁[1, 𝜎], but we compute them incremen-

ally while visiting the subtries as in the proof of Theorem 1. This time
omplexity might appear prohibitive, but in Section 5 we will show that
he practical building time is reasonable and worth achieving excellent
nd Pareto optimal performance at query time.

.5. Dealing with the space–time trade-off

Under some scenarios, it might be of interest to slightly readjust
ur optimisation procedure to take into account the query performance
oo, while possibly giving up just a little of the space optimality. To
ccomplish this space–time trade-off, we rely on the intuition that the
ore levels are collapsed, the faster a trie traversal will be. But, on the

ther hand, as we collapse more levels, the fan-out of each macro-node
ncreases and so the time to branch out of each individual macro-node
ncreases as well. However, we experimentally observed that this is
ot a major concern because our compressed encoding of collapsed
ubtries is in practice extremely efficient to be navigated; thus the time
eduction given by increasing the number of collapsed levels dominates
he increased access time due to the larger node fan-out.

With this in mind, we modify the algorithm of Section 4.2 to relax
he search for the minimum space occupancy as follows. At each visited
nternal node 𝑣, we compute 𝐶∗(𝑣) as usual and denote by 𝓁∗ the value
f 𝓁 minimising the right-hand side of Eq. (5). Then, we find the largest
alue 𝓁 ∈ {𝓁∗,𝓁∗ + 1,… , ℎ(𝑣)} that allows representing the collapsed
ode within a constant factor 𝛼 ≥ 0 more than 𝐶∗(𝑣). Note that this new
pproach has no impact on the construction complexity. We experiment
ith it in Section 5, where 𝛼 will be expressed as a percentage.

.6. Query operations

The operation 𝚕𝚘𝚘𝚔𝚞𝚙(𝑃) in the CoCo-trie begins from the root
acro-node 𝑣𝓁 by computing the integer 𝑦 = 𝑖𝑛𝑡𝓁(𝑃 [1,𝓁]) − 𝑐1𝑣𝓁 . Then,
e seek for 𝑦 into the increasing sequence 𝑐𝑖𝑣𝓁 − 𝑐1𝑣𝓁 , for 𝑖 = 2,… , 𝑚:

f the search fails, we return −1; otherwise, we obtain an index 𝑗 of 𝑦,
nd proceed with the recursion in the 𝑗th child of the macro-node. We
teratively consume multiple characters at once from the pattern 𝑃 as
e descend the CoCo-trie via LOUDS. When 𝑃 is exhausted, we return

he unique LOUDS index of the node we reached.
As for the operation 𝚛𝚊𝚗𝚔(𝑃), we switch to the DFUDS encoding for

he trie topology as it allows us to compute the rank of a leaf efficiently,
akes the same space of LOUDS, and it is still efficient in navigating
he trie downwards [56, §8.3]. At each macro-node 𝑣𝓁 corresponding
o the pattern substring 𝑃 [𝑘, 𝑘 + 𝓁 − 1], we compute the integer 𝑦 =
𝑛𝑡𝓁(𝑃 [𝑘, 𝑘 + 𝓁 − 1]) − 𝑐1𝑣𝓁 and seek for the largest index 𝑗 such that
𝑗
𝑣𝓁 ≤ 𝑦, and we keep searching recursively into the 𝑗th child of 𝑣𝓁 . In
he case the pattern substring we are considering in 𝑣𝓁 is shorter than
, i.e. 𝑘 + 𝓁 − 1 > |𝑃 |, then we proceed downwards to the rightmost
escendant of the 𝑗th child of 𝑣𝓁 (recall that 𝑖𝑛𝑡𝓁 right-pads the given
attern suffix with $ characters until it has length 𝓁). In any case, we
ventually reach a leaf node and return efficiently its rank thanks to
he DFUDS encoding of the trie structure.

For solving the operation 𝚊𝚌𝚌𝚎𝚜𝚜(𝑖) = 𝑠 with DFUDS, we jump
n constant time to the 𝑖th leaf and reconstruct 𝑠 backwards as the
avigation proceeds to the root. Specifically, at each macro-node 𝑣𝓁
ncountered along the upward path, we decode the macro-character
𝑗
𝑣𝓁 , where 𝑗 is the position of the previously-visited macro-node among
𝓁 ’s children.

For solving the operation 𝚙𝚛𝚎𝚏𝚒𝚡_𝚜𝚎𝚊𝚛𝚌𝚑(𝑃) with DFUDS, we pro-
eed downwards from the root. At each macro-node 𝑣𝓁 corresponding
o the pattern substring 𝑃 [𝑘, 𝑘 + 𝓁 − 1], we compute the integer 𝑦 =
𝑛𝑡𝓁(𝑃 [1,𝓁]) − 𝑐1𝑣𝓁 and seek for 𝑦 into the increasing sequence 𝑐𝑖𝑣𝓁 − 𝑐1𝑣𝓁 :

f the search fails, we return an empty string set, meaning that no

Information Systems 120 (2024) 102316A. Boffa et al.

a
r
𝑐
o
i

t
a
m
i

a
a
s
𝚊

c
r

5

p
s
r

s

5

s
c
t
n
c
n
b
i
(
p
d
t

strings in  are prefixed by 𝑃 . In the case the pattern substring we
re considering in 𝑣𝓁 is shorter than 𝓁, i.e. 𝑘 + 𝓁 − 1 > |𝑃 |, then we
eturn all strings in the subtries descending from the macro-characters
𝑎
𝑣𝓁
,… , 𝑐𝑏𝑣𝓁 of 𝑣𝓁 whose prefixes match with 𝑃 [𝑘, |𝑃 |]; a pre-order visit

f the corresponding 𝑏 − 𝑎 + 1 subtries allows to retrieve the string set
n lexicographic order.

Finally, for both 𝚕𝚘𝚘𝚔𝚞𝚙(𝑃) and 𝚛𝚊𝚗𝚔(𝑃), we observe that the step
hat searches for 𝑦 in a macro-node can be efficiently supported in
ll the encoding schemes introduced in Section 4.3. Indeed, if the
acro-node stores 𝑚 − 1 elements in a universe of size 𝑢, EF allows

mplementing the search in (log 𝑢
𝑚) time using a well-known algorithm

based on binary search [56, §4.4.2], PA supports it in (log𝑚) time via
standard binary search, BV supports it in (1) time using succinct

uxiliary structures (recall Footnote 1), and DE supports it in (1) time
ince the child to descend to is given by the value of 𝑦. Moreover, for
𝚌𝚌𝚎𝚜𝚜(𝑖), we observe that the step of decoding a macro-character 𝑐𝑗𝑣𝓁
an be done (1) time in all three encoding schemes, since they support
andom access according to 𝑗.

. Experiments

We now experimentally show that:

1. The choice of the subtries to collapse differs significantly from
dataset to dataset and from node to node. This provides a clear
and concrete answer to questions Q2 and Q3 in Section 4, thus
motivating our study.

2. The alphabet-aware compression of macro-nodes (Section 4.4)
improves the space of CoCo-trie by up to 38% and the query
time by up to 29%.

3. The technique that allows us to trade off space with query time
via a parameter 𝛼 (Section 4.5) improves the query time of CoCo-
trie by up to 33% at the cost of a slight increase in space (no
more than 24%).

4. The performance of our highly-engineered competitors is very
input-sensitive, in the sense that no solution dominates the
others in space and time on all the datasets.

5. With respect to our competitors, the CoCo-trie results space–time
efficient, robust, and flexible: in fact, on three datasets it signif-
icantly improves the space–time performance of all competitors
whereas in the three other datasets it is on the space–time Pareto
front of the best competitors (thus offering other competitive and
interesting trade-offs).

Given the variety of the datasets (six) and highly-engineered com-
etitors (five) we experimentally test in this section, the above results
uggest that our CoCo-trie may be regarded as the state-of-the-art
eference for the static string dictionary problem.

Readers interested in reproducing our experiments can find the
ource code and the datasets at https://github.com/aboffa/CoCo-trie.

.1. Implementation notes

Our implementation of the CoCo-trie is composed of three main data
tructures: denoted with 𝐿, 𝐸, and 𝐹 . The first one is the bit-array 𝐿
ontaining the succinct LOUDS representation of the (collapsed) trie
opology. The second one is the array 𝐸 containing, for each macro-
ode 𝑣𝓁 , the first branching macro-character 𝑐1𝑣𝓁 followed by the en-
oding of the remaining macro-characters 𝑐𝑖𝑣𝓁 − 𝑐1𝑣𝓁 , the information
eeded to decode them (i.e. a field representing which encoding has
een selected from the ones described in Section 4.3, and the alphabet
n 𝜎 bits if the solution of Section 4.4 is used for 𝑣𝓁), the value of 𝓁
Section 4.2), and a flag indicating whether the string labelling the
ath from the trie root to 𝑣 is in the dictionary (since a string in the
ictionary could be the prefix of another). The last data structure is
9

he array 𝐹 containing, for each macro-node 𝑣𝓁 , a pointer to 𝐸 where
the encoding of 𝑐1𝑣𝓁 starts. We random-access 𝐹 via the node identifiers
implicitly given by the succinct LOUDS representation in 𝐿.

As we mentioned at the end of Section 4.2, we bound the number
of levels to be inspected by the optimiser so that the result of 𝑖𝑛𝑡𝓁 does
not exceed the word size 𝑤 of the machine. This can be achieved by
setting 𝓁 < ⌈𝑤∕ log 𝜎𝑣𝓁 ⌉ for each macro-node 𝑣𝓁 . For example, in our
128-bit (uint128_t) implementation, we can collapse into a single
macro-node a (sub)trie built over an alphabet size 𝜎 = 4 and having
a height at most 𝓁 = 128∕2 = 64 (indeed this happens in practice, see
Fig. 3).

The CoCo-trie is built on the sdsl library [72],3 ds2i library [73],
and sux library [74]. To navigate the succinct LOUDS representation
of the collapsed trie topology (contained in the bitvector 𝐿) the follow-
ing operations are needed: nodemap, nodeselect, leafrank, and
child [56, §8.1]. These operations can be implemented with constant-
time rank/select operations on the bitvector 𝐿. More precisely, from
the sdsl library, we use sdsl::rank_support_v for rank1 and
rank00. From the sux library, we use sux::SimpleSelectZero for
the implementation of select0. Recent studies [75] show that these
implementations are the fastest, and thus the CoCo-trie is extremely fast
in navigating the topology of the collapsed trie. Moreover, the pointers
in the array 𝐹 are stored in a sdsl::int_vector whose entries
take ⌈log(#macro-nodes)⌉ bits each. From the ds2i library, we leverage
the efficient Elias-Fano implementation in ds2i::compact_elias_
fano.

Finally, we write CoCo-trie 𝛼% to denote the space-relaxation tech-
nique of Section 4.5 with parameter 𝛼 ≥ 0 (𝛼 = 0 corresponds to the
space-optimal solution).

5.2. Experimental setting

We perform our experiments on a machine equipped with a
2.30 GHz Intel Xeon Platinum 8260M CPU and 384 GiB of RAM,
running Ubuntu 20.04.3. We compile our codebase using g++-11.1
and the C++-20 language standard.

5.2.1. Datasets
We aimed at choosing very diverse datasets in terms of sources

(such as URLs, XML data, DNA and protein sequences, database records,
and dictionaries of search engines) and features (such as number 𝑛 of
strings, total size in MB, alphabet size 𝜎, and average/maximum length
of the lcp between consecutive sorted strings) to capture and depict a
broad spectrum of performance among the tested string dictionaries.
All strings in each dataset are different.

We will experiment with the following six datasets:

url contains URLs of a Web crawl taken in 2015, starting from
the site europa.eu without any domain restriction [45].4 Stor-
ing a set of URLs into a string dictionary is fundamental for
crawlers [59]. URLs datasets have also been used in [16,17,24,
37,40], but ours is one order of magnitude larger.

dna consists of all the unique substrings of 𝑘 = 31 bases from a
DNA sequence obtained from files available at the Gutenberg
Project site: namely, from 01hgp10 to 21hgp10, plus 0xhgp10
and 0yhgp10.5 These unique substrings are called 𝑘-mers, and
storing them into a string dictionary allows performing subse-
quent efficient 𝑘-mer-prefix searches (and suffix searches, if the
dictionary is built on their reversal) and 𝑘-mer counting (even
on a prefix/suffix of length 𝑙 < 𝑘). Datasets with 𝑘-mers have
also been used in other evaluations [16,37].

3 We use the https://github.com/vgteam/sdsl-lite fork.
4 https://law.di.unimi.it/webdata/gsh-2015/
5
 http://pizzachili.dcc.uchile.cl/

https://github.com/aboffa/CoCo-trie
https://github.com/vgteam/sdsl-lite
https://law.di.unimi.it/webdata/gsh-2015/
http://pizzachili.dcc.uchile.cl/

Information Systems 120 (2024) 102316A. Boffa et al.

O
t
6

tpcds-id are strings of 16 characters taken from the
c_customer_id column of the customer table in the TPC-
DS-3TB dataset [76].6 Many research papers on query processing
and optimisation use the TPC-DS standard benchmark [77,
78], and we note that storing database columns into string
dictionaries allows solving range queries and joins [79].

trec-terms is the set of terms appearing in the text of the TREC
GOV2 collection. The space–time efficient indexing of a set of
terms appearing in a collection of Web documents is a funda-
mental task in Information Retrieval [59]. This dataset has also
been used in [48].

protein contains different sequences of amino acids.5 This dataset
has also been used in [24].

xml is a part of the XML dump of the dblp.org website.5 This dataset
has also been used in [24].

We preprocess each dataset to keep, for each string 𝑠, the shortest
prefix of 𝑠 that distinguishes it from all the other strings in the dataset.
This suffices to index the dictionary strings and support the 𝚛𝚊𝚗𝚔 opera-
tion as well as all other query operations mentioned at the beginning of
this paper. In fact, it is well known that, for any trie-based data struc-
ture, the remaining suffixes can be concatenated and compressed into
a separate array, and efficiently retrieved when needed [56, §8.5.3].
Table 2 summarises the datasets and their characteristics after this
preprocessing.

5.2.2. State-of-the-art competitors
As argued in Section 2, we consider as competitors of our CoCo-

trie the following (static) string dictionary implementations because
they are either the state-of-the-art or they offer space–time efficient
approaches to trie representations:

CART: a compact version of ART [29] obtained by constructing a plain
ART and then converting it to a static compact version [5,41,
80].

PDT: the Centroid Path Decomposed Trie [17]. We experiment with
both the vbyte version that encodes the labels of the edges
with vbyte [81], and the csp version that adds another layer of
compression on top of the edge labels.

FST: the Fast Succinct Trie [5]. We use a slightly-modified code [82]
that solves lookup queries rather than range-query filtering. We
show the full space–time performance of FST by varying its
parameter 𝑅 = 2𝑖 for 𝑖 = 0,… , 10.

We also tested the following representatives of the dynamic ap-
proaches, which will allow us to show that the restriction to a static
scenario allows for considerably more space–time efficient string dic-
tionaries:

ART: the Adaptive Radix Tree [29].

ctrie++: the improved compact trie [24].

5.2.3. Query workloads
Given that our competitors do not implement 𝚛𝚊𝚗𝚔 (despite their

design does support it), we decided to measure the performance of
𝚕𝚘𝚘𝚔𝚞𝚙. We can reasonably expect that 𝚛𝚊𝚗𝚔 would perform similarly

6 http://www.tpc.org/tpcds/
10
to 𝚕𝚘𝚘𝚔𝚞𝚙, because of the way the former can be derived from the latter
in trie-based (rather than hash-based) data structures, as the ones we
experimentally test here.

Given a dataset of 𝑛 strings, we measure the 𝚕𝚘𝚘𝚔𝚞𝚙 time by aver-
aging the performance of 3 repetitions of a batch of 𝑛 string searches,
where half of the strings are taken from the datasets and half are gen-
erated randomly. Changing this proportion impacts the performance of
the tested trie-based string dictionaries, so we vary it in an experiment
in Section 5.4.1.

To generate these random strings not in the datasets, we (i) extract
a randomly-chosen string belonging to the dataset and truncate it to the
average lcp of the entire dataset, and (ii) append to it a random string
whose length matches the average length of the strings in the dataset.
This way, the queries we generate mimic a fair query workload that
guarantees a balance between existent and non-existent queried strings,
and for the latter that the traversal does not stop at the very first steps
because of a mismatch.

5.3. An analysis of the CoCo-trie design

In this section, we dig into an analysis of the effectiveness of
the individual techniques and optimisations adopted in the design of
CoCo-trie.

5.3.1. Distribution of the number of collapsed levels
Fig. 3 shows our first experimental result: the number of macro-

nodes collapsing a certain amount of levels forms a non-trivial distri-
bution whose shape differs from dataset to dataset. This provides a
clear concrete answer to both questions Q2 and Q3 posed in Section 4:
the number of levels to be collapsed in a subtrie greatly depends on
the indexed strings, and it must be chosen locally on a per-node basis.
Therefore, the data-aware optimisation approach to subtrie compaction
implemented in our CoCo-trie is essential to achieve the most from
these features.

In particular, on url, xml, and trec-terms the CoCo-trie opti-
miser selects many times the lowest possible values of 𝓁 (each horizon-
tal axis ranges from 𝓁 = 1 to the largest 𝓁 over all macro-nodes 𝑣𝓁).

n dna, the CoCo-trie optimiser collapses at most 𝓁 = 23 levels at a
ime, selects 𝓁 = 1 for 33% of the time, and a value between 2 and 15
3% of the time. For protein, instead, the CoCo-trie optimiser selects

high values of 𝓁 (very often 𝓁 ≈ 30) so that, in the end, the distribution
resembles a Gaussian one. The results on tpcds-id are also of interest
for their simplicity: due to the regularity of this dataset, the CoCo-trie
optimiser creates a macro-node for the root that collapses 𝓁 = 11 levels,
and each of its 4096 children collapses 𝓁 = 4 levels.

5.3.2. Effectiveness of the alphabet-aware encoding
An important feature of our CoCo-trie is the alphabet-aware encod-

ing of macro-nodes described in Section 4.4. Our experiments indeed
suggest that operating on the smaller alphabet 𝛴𝑣𝓁 at each macro-
node 𝑣𝓁 , rather than on the global alphabet 𝛴, can simultaneously
save a considerable amount of space and decrease the query time
too. Specifically, on the dna dataset, this alphabet-aware encoding
technique makes the CoCo-trie use 38% less space and be 16% faster
in answering queries. On url, it obtains a 3% improvement in space
and a 29% improvement in query time. On protein, it obtains a
7% improvement in space and a 5% improvement in query time. On
xml, it obtains a 4% improvement in space and a 14% improvement
in query time. On trec-terms, it obtains a 12% space improvement
and a 27% improvement in query time. Lastly, we notice that the
dataset tpcds-id does not benefit from this technique, as indeed our
optimiser does not choose the alphabet-aware encoding for any node.

As a result, since the alphabet-aware encoding of macro-nodes is
either effective or does not harm the performance of the CoCo-trie, we
always enable it in the following experiments.

http://www.tpc.org/tpcds/

Information Systems 120 (2024) 102316A. Boffa et al.
Fig. 3. Normalised frequency of macro-nodes obtained by collapsing subtries consisting of 𝓁 levels. Greater values of 𝓁 yield fewer but (individually) more space-consuming
macro-nodes. The CoCo-trie optimiser chooses 𝓁 on a per-node basis to minimise the space taken by the overall compressed trie, and this choice is highly dependent on the
features of the input strings, as these plots show.
5.3.3. Effectiveness of the space-relaxation technique
The space-relaxation technique described in Section 4.5, albeit sim-

ple, performs very well in practice. We evaluate it by testing the values
𝛼 = 5, 10, 15, and 20%, and by measuring the change in the average
number of collapsed levels, the space occupancy, and the query time
of the resulting CoCo-trie (these last two measures are also reported in
Fig. 5, and commented next).

On url, by going from a space-optimal solution (𝛼 = 0%) to
the space-relaxed solution with 𝛼 = 5%, we increase the average
number of collapsed levels by 3.13% (i.e., from 8.65 to 8.92). This
small improvement has a considerable impact on the query time, which
improves by 15%, at the cost of a 16% increase in space. As we further
increase 𝛼 from 5% to 10%, we notice another 3.3% improvement in
the average number of collapsed levels, which in turn induces another
2.6% improvement in query time at the cost of an 8% increase in space.
For further increments of 𝛼 (i.e., beyond 10%), there is no significant
improvement in the query time.

On dna, by going from the space-optimal solution with 𝛼 = 0%
to the space-relaxed solution with 𝛼 = 5%, we increase the average
number of collapsed levels by 3% that, in turn, significantly improves
the query time by 23% at the cost of a 6% increase in the total space
occupancy. Further increasing 𝛼 from 5% to 20% does not change the
performance much, the query time increases too and thus the space
relaxation is of no help.

On tpcds-id, the space–time performance of the CoCo-trie re-
mains nearly the same for all tested values of 𝛼.

On trec-terms, by increasing 𝛼 from 0% to 5% we incredibly
improve the query time by 33%, at the cost of increasing the space
usage by only 4%. Further increasing 𝛼 from 5% up to 20% slightly
improves the query time (up to 6%) but it also increases the space
occupancy (up to 12%).

On protein, by going from the space-optimal solution with 𝛼 = 0%
to the space-relaxed solution with 𝛼 = 5%, we increase the average
number of collapsed levels by 7% (from 24.3 to 26.0). In turn, this
improves the query time by 19% at the cost of a 9% increase in space.
In this dataset, if we further increase 𝛼 to 10%, 15%, or to 20%, we do
not observe significant improvements in query time.

Finally, on xml, by going from the space-optimal solution with
𝛼 = 0% to the space-relaxed solution with 𝛼 = 5%, we increase the
average number of collapsed levels by 4.3%. In turn, this improves
the query time by 15% at the cost of an 8% increase in space. If we
further increase 𝛼 up to 20%, the query time keeps decreasing achieving
especially good time performance.

Looking at these results, we suggest to the final user of the CoCo-
trie, who wants to use a little bit more space but solve the query faster,
to set 𝛼 = 10%. This value of 𝛼 has shown the best overall performance
on this variegated collection of datasets.
11
5.3.4. Breakdown of the space taken by the CoCo-trie components
Fig. 4 shows the percentage of the space occupied by the various

components of the CoCo-trie: the node structure (which includes, for
each macro-node 𝑣𝓁 , the value of 𝓁, a flag indicating whether the
string labelling the path from the root to 𝑣𝓁 is in the dictionary, and
the pointer to the encoding of the branching macro-characters of 𝑣𝓁),
the topology (i.e. the LOUDS representation of the collapsed trie),
the first macro-characters of each macro-node (encoded using 𝓁 log 𝜎
bits), the first macro-character of each macro-node with its alphabet
(encoded using 𝓁 log 𝜎𝑣𝓁 bits), and the macro-characters following the
first one that are encoded with one of the succinct encoding schemes
we described in Section 4.3.

We can notice that the doughnut charts for the different datasets
are very diverse. This supports our thesis that CoCo-trie is able to adapt
to the very varied characteristics of the tested string dictionaries over
which it is built.

First of all, let us discuss the tpcds-id dataset. Due to its regu-
larity, the CoCo-trie space occupancy is mainly made of topology and
compressed labels. As discussed in Section 5.3.1, our optimiser creates
a macro-node for the root that collapses 𝓁 = 11 levels, and each of its
4096 children collapses 𝓁 = 4 levels. CoCo-trie internal macro-nodes
contribute to the node structure, first macro-characters and topology
components; instead, the leaves solely contribute to the topology com-
ponent. So we have just 4097 internal nodes for 30 × 106 leaves and
that explains why the space occupied by the node structure and first
macro-characters is extremely low (0.06% and 0.03% respectively) and
the space for topology is so high. This is the only dataset where the
alphabet-aware encoding has not been applied to any node, and this is
why the percentage of space occupied by first macro-characters remap
and compressed macro-characters with the alphabet-remap encoding is
0%.

On all the other datasets, the space usage of the topology ranges
from 5.1% to 24.4%, and the node structure occupies from 15.2% to
25.1% of the total compressed space. Fig. 4 shows that in all these cases
the alphabet-remapping technique, introduced in Section 4.4, is very
effective since our optimiser often selects to encode the first macro-
character using the local alphabet 𝛴𝑣𝓁 . In fact, the space usage of the
first macro-characters compressed with the alphabet-aware encoding is
almost equal to (on trec-terms) or more than the one without this
technique. Similarly, the space usage for compressing the sequence with
the other macro-characters (i.e., not the first ones) with the alphabet-
aware encoding is more than the one without this technique on all
datasets but xml.

Information Systems 120 (2024) 102316A. Boffa et al.

5

t
p
ℎ
t
e
t
(
h
f
t
t
(
o
i
o
P
o
q
t
t
i
m
d
i
f

5

t
p
a
c
p

a
l
t

i

Fig. 4. Percentage of space occupied by the various components of the CoCo-trie built on top of the selected datasets.
d
t
a
l
d

p
p
c
p
C
h
v
t
T
n
o
i

.3.5. Construction time
As discussed in Section 4.4, the construction of the CoCo-trie with

he alphabet-aware encoding runs in (𝑁ℎ2) time. This may seem
rohibitive for growing values of ℎ, as indeed we have considered
= 64 in Section 5.1. Nonetheless, in practice, given an uncompacted

rie, building the CoCo-trie is from 3× to 12× slower than the clos-
st solution on the Pareto front for each dataset (as commented in
he next section). This slowdown is smaller than the expected one
i.e., (ℎ2)) and it may be due to the existence of many subtrees whose
eight is much smaller than 64, as in the case of the numerous leaves
or which ℎ = 0. More precisely, on url CoCo-trie is 7.2× slower
han PDT(csp) (which requires 1.65 μs/key), on dna it is 5.2× slower
han FST (0.67 μs/key), on tpcds-id it is 4.2× slower than FST
0.36 μs/key), on trec-terms it is 3.9× slower than FST (0.34 μs/key),
n protein it is 12× slower than PDT(csp) (7.7 μs/key), and on xml
t is 3.0× slower than PDT(csp) (1.1 μs/key). We argue that paying,
n average, 6× more construction time is well rewarded by having
areto-optimal performance at query time, no matter the characteristics
f the underlying dataset, and especially in a scenario of build-once-
uery-many-times is considered. Yet, we believe one may speed up
he construction with a more space–time efficient representation of
he input uncompacted trie navigated by the CoCo-trie optimiser. This
nput trie is currently pointer-based, potentially leading to a cache
iss for each visited node. Compacted trie representations, as the ones
iscussed in Section 2, could provide viable solutions to address this
ssue; however, we prefer to leave these implementation details to
uture work.

.4. Space–time performance comparison

Fig. 5 shows the results about the space and time performance of
he CoCo-trie and of the static competitors: note that the more the
erformance of a data structure is close to the bottom-left corner of
picture, the best it is. Moreover, we point out that both 𝑦- and 𝑥-axis

hange with the datasets, whose original size in MBs is shown in each
lot title.

CART, though fast, is generally very space-inefficient. On url it is
lso particularly slow because of the large size of the dataset and of the
arge average-lcp among the indexed strings, which causes longer trie
raversals and thus more cache misses.

Whichever is the setting of its parameter 𝑅, FST is dominated
n space and time performance by our CoCo-trie (and also by other
12
ata structures) on all the datasets. This is especially evident on dna,
pcds-id, protein, and xml. We argue that this is due to the high
verage-lcp of the strings in these datasets that require FST to perform
onger trie traversals that proceed one character at a time (indeed, FST
oes not compact unary paths).

PDT is always among the most space-efficient data structures (es-
ecially in its csp configuration, which uses a form of grammar com-
ression on the edge labels), but its query time performance is not
ompetitive on dna, tpcds-id and trec-terms. This can be ex-
lained by looking at the average height of the nodes in PDT and
oCo-trie. In fact, PDT nodes on dna, tpcds-id and trec-terms
ave an average height equal to 6.0, 5.4, and 9.6, respectively. Con-
ersely, the average height of the macro-nodes in the CoCo-trie (see
he 𝛼 = 0% configuration in Fig. 5) is instead 3.5, 2.8, and 5.25.
his means that the CoCo-trie requires nearly half of the accesses to
odes, on average. And in fact, CoCo-trie is 2.6× faster than PDT(csp)
n dna, 2.3× faster on trec-terms using its same space, and it
s 2.6× faster and 1.8× more succinct than PDT(csp) on tpcds-id.

This means that, on these three datasets, our subtrie collapsing-and-
compression technique is extremely effective not only in reducing the
space occupancy but also in speeding up the query operation. On
the other three datasets, CoCo-trie always has some configuration on
the Pareto front of PDT (mainly improving the time efficiency), thus
offering other competitive space–time trade-offs.

Compared to CART, FST, and PDT, which are very input-sensitive as
no solution dominates the others in space and time on all the datasets,
the CoCo-trie results space–time efficient, robust, and flexible over all
six datasets: in fact, it significantly dominates the space–time perfor-
mance of all competitors on dna, tpcds-id, and trec-terms; and
it is on the Pareto front of the best competitors on url, protein, and
xml by offering faster query operations.

Finally, we show the performance of our dynamic competitors, ART
and ctrie++, in the separate Table 3 because they are far from the plot
range of Fig. 5. As the table shows, their space usage is from 2.2× to
130× larger than CoCo-trie while being only slightly faster on trec-
terms and protein. This increased space usage is expected due to
the extended functionality of the dynamic competitors.

5.4.1. Impact of the query workload
In this last experiment, we dig into the time performance of the

tested data structures over the various query workloads described in

Information Systems 120 (2024) 102316A. Boffa et al.
Fig. 5. CoCo-trie dominates the space–time performance of all static competitors on the dna, tpcds-id, and trec-terms datasets; and it is on the Pareto front of the best
competitors on url, protein, and xml.
Table 3
Space–time performance of the dynamic competitors, ART and ctrie++, compared to CoCo-trie.

Dataset ART query time ART space usage ctrie++ query time ctrie++ space usage

url 1.04× 6.45× 1.02× 27.36×
dna 1.29× 15.90× 1.18× 81.24×
tpcds-id 1.19× 42.50× 1.30× 130.76×
trec-terms 1.16× 11.19× 0.98× 50.42×
protein 1.54× 2.21× 0.89× 12.86×
xml 1.02× 6.80× 1.09× 31.99×
Fig. 6. Time performance of the lookup query for the fastest tested solutions as we vary the percentage of queries for strings not in the dataset (generated as described in
Section 5.2.3).
Section 5.2.3 and generated by varying the percentage of strings taken
from the datasets or generated randomly from 0% to 100% (in Fig. 5
this percentage was set to 50%). The results are shown in Fig. 6. For
CoCo-trie and FST, we report the most time-efficient configuration by
varying 𝛼 and 𝑅, respectively.

Firstly, one may expect the query time to decrease as the amount of
13

random strings increases, since the trie traversal should stop earlier due
to a missing branch. This happens for all the tested implementations on
url, xml, and protein, but it does not happen on dna and tpcds-
id. This is due to the interplay between the size of the alphabets of
the strings in these two latter datasets, and the fact that their lcp is
close to the average length. So that, there is a high probability of
randomly-generating strings that share a long lcp with some other

dictionary string. As such, we observe an increased query time in all

Information Systems 120 (2024) 102316A. Boffa et al.

f
s
i

l
n

6

d
a
i
a
a

m
e
(
i
o
b
s
f
a
w
t
i

D

c
i

D

c

A

P
A
‘
a
a
R
I
-
D
C
U
s
‘

R
tested solutions (this is particularly evident for PDT), since each trie
needs to traverse multiple levels for solving those queries.

Secondly, the figure suggests also that the alphabet-aware encoding
introduced in Section 4.4 is particularly effective when we query
the CoCo-trie over many non-dictionary strings. Indeed, during the
traversal we check whether the query substring corresponding to the
current macro-node intersects with the macro-node’s local alphabet
so to instantly recognise an unsuccessful 𝚕𝚘𝚘𝚔𝚞𝚙, thereby achieving
aster performance compared to our competitors. Nevertheless, the
earch in the CoCo-trie could continue to compute 𝚛𝚊𝚗𝚔, as described
n Section 4.6.

Overall, the CoCo-trie is the fastest on all datasets and query work-
oads except on url, where it is nonetheless the fastest for a large
umber of randomly-generated query strings.

. Conclusions and future work

We have introduced a new trie-based design of compressed string
ictionaries that collapses and compresses subtries chosen by means of
novel space-optimisation procedure hinging on a pool of new encod-

ng techniques. The experimental results over a variety of six datasets
nd five highly-engineered competitors suggest that our CoCo-trie does
dvance the state of the art of string dictionaries.

Our novel design scheme paves the way for the multi-criteria opti-
isation of trie data structures that take into account possibly other

ncoding schemes (for macro-nodes) and multi-objective functions
e.g., over time, space, query distribution, etc.). It could also be
nteresting to investigate the use of hash-based approaches [53] in
ur space-optimisation scheme because this could allow faster 𝚕𝚘𝚘𝚔𝚞𝚙s
ut at the cost of giving up the 𝚛𝚊𝚗𝚔 operation. Finally, we mention
ome issues about dynamic string dictionaries that would deserve
urther investigation: the CoCo-trie could be ‘‘dynamised’’ either by (i)
dopting an LSM-based approach, which is very well-known in large
rite-intensive systems (such as in key–value stores [13]); or by (ii)

he use of buffers or dynamic containers in macro-nodes to hold newly
nserted strings.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

The source code and the datasets are available at https://github.
om/aboffa/CoCo-trie.

cknowledgements

This work was supported by the European Union – Horizon 2020
rogramme under the scheme ‘‘INFRAIA-01-2018-2019 – Integrating
ctivities for Advanced Communities’’, Grant Agreement n. 871042,

‘SoBigData++: European Integrated Infrastructure for Social Mining
nd Big Data Analytics’’ (http://www.sobigdata.eu), by the NextGener-
tionEU – National Recovery and Resilience Plan (Piano Nazionale di
ipresa e Resilienza, PNRR) – Project: ‘‘SoBigData.it - Strengthening the

talian RI for Social Mining and Big Data Analytics’’ – Prot. IR0000013
Avviso n. 3264 del 28/12/2021, by the spoke ‘‘FutureHPC & Big-
ata’’ of the ICSC – Centro Nazionale di Ricerca in High-Performance
omputing, Big Data and Quantum Computing funded by European
nion – NextGenerationEU – PNRR, by the Italian Ministry of Univer-

ity and Research ‘‘Progetti di Rilevante Interesse Nazionale’’ project:
‘Multicriteria data structures and algorithms’’ (grant n. 2017WR7SHH).
14
eferences

[1] B.-J.P. Hsu, G. Ottaviano, Space-efficient data structures for top-𝑘 completion,
in: Proc. 22nd International Conference on World Wide Web, WWW, 2013, pp.
583–594, http://dx.doi.org/10.1145/2488388.2488440.

[2] S. Gog, G.E. Pibiri, R. Venturini, Efficient and effective query auto-completion,
in: Proc. 43rd ACM International Conference on Research and Development in
Information Retrieval, SIGIR, 2020, pp. 2271–2280, http://dx.doi.org/10.1145/
3397271.3401432.

[3] Y.M. Kang, W. Liu, Y. Zhou, QueryBlazer: Efficient query autocompletion frame-
work, in: Proc. 14th International Conference on Web Search and Data Mining,
WSDM, 2021, pp. 1020–1028, http://dx.doi.org/10.1145/3437963.3441725.

[4] R. Mavlyutov, M. Wylot, P. Cudré-Mauroux, A comparison of data structures
to manage URIs on the web of data, in: Proc. 12th European Semantic Web
Conference, ESWC, 2015, pp. 137–151, http://dx.doi.org/10.1007/978-3-319-
18818-8_9.

[5] H. Zhang, H. Lim, V. Leis, D.G. Andersen, M. Kaminsky, K. Keeton, A. Pavlo,
SuRF: practical range query filtering with fast succinct tries, in: Proc. ACM
International Conference on Management of Data, SIGMOD, 2018, pp. 323–336,
http://dx.doi.org/10.1145/3183713.3196931.

[6] S. Luo, S. Chatterjee, R. Ketsetsidis, N. Dayan, W. Qin, S. Idreos, Rosetta: a robust
space-time optimized range filter for key-value stores, in: Proc. ACM International
Conference on Management of Data, SIGMOD, 2020, pp. 2071–2086, http:
//dx.doi.org/10.1145/3318464.3389731.

[7] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows,
T. Chandra, A. Fikes, R.E. Gruber, Bigtable: a distributed storage system for
structured data, ACM Trans. Comput. Syst. 26 (2) (2008) http://dx.doi.org/10.
1145/1365815.1365816.

[8] A. Apostolico, M. Crochemore, M. Farach-Colton, Z. Galil, S. Muthukrishnan, 40
Years of suffix trees, Commun. ACM 59 (4) (2016) 66–73, http://dx.doi.org/10.
1145/2810036.

[9] V. Mäkinen, D. Belazzougui, F. Cunial, A.I. Tomescu, Genome-Scale Algo-
rithm Design, Cambridge University Press, 2015, http://dx.doi.org/10.1017/
CBO9781139940023.

[10] S.J. Huston, A. Moffat, W.B. Croft, Efficient indexing of repeated n-grams, in:
Proc. 4th International Conference on Web Search and Web Data Mining, WSDM,
2011, pp. 127–136, http://dx.doi.org/10.1145/1935826.1935857.

[11] G.E. Pibiri, R. Venturini, Efficient data structures for massive N-gram datasets,
in: Proc. 40th ACM International Conference on Research and Development
in Information Retrieval, SIGIR, 2017, pp. 615–624, http://dx.doi.org/10.1145/
3077136.3080798.

[12] P. Ferragina, R. Grossi, A. Gupta, R. Shah, J.S. Vitter, On searching compressed
string collections cache-obliviously, in: Proc. 27th ACM Symposium on Principles
of Database Systems, PODS, 2008, pp. 181–190, http://dx.doi.org/10.1145/
1376916.1376943.

[13] C. Luo, M.J. Carey, LSM-based storage techniques: a survey, VLDB J. 29 (1)
(2020/01/01) 393–418, http://dx.doi.org/10.1007/s00778-019-00555-y.

[14] D.E. Knuth, The Art of Computer Programming, Vol. 3, second ed.,
Addison-Wesley, 1998.

[15] D.R. Morrison, PATRICIA—Practical algorithm to retrieve information coded
in alphanumeric, J. ACM 15 (4) (1968) 514–534, http://dx.doi.org/10.1145/
321479.321481.

[16] S. Kanda, D. Köppl, Y. Tabei, K. Morita, M. Fuketa, Dynamic path-decomposed
tries, ACM J. Exp. Algorithmics 25 (2020) 1–28, http://dx.doi.org/10.1145/
3418033.

[17] R. Grossi, G. Ottaviano, Fast compressed tries through path decompositions,
ACM J. Exp. Algorithmics 19 (1) (2014) http://dx.doi.org/10.1145/2656332,
URL https://github.com/ot/path_decomposed_tries.

[18] S. Nilsson, M. Tikkanen, Implementing a dynamic compressed trie, in: Proc. 2nd
International Workshop on Algorithm Engineering, WAE, 1998, pp. 25–36.

[19] A. Acharya, H. Zhu, K. Shen, Adaptive algorithms for cache-efficient trie search,
in: Proc. International Workshop on Algorithm Engineering and Experimentation,
ALENEX, 1999, pp. 300–315, http://dx.doi.org/10.1007/3-540-48518-X_18.

[20] N. Askitis, R. Sinha, Engineering scalable, cache and space efficient tries for
strings, VLDB J. 19 (5) (2010) 633–660, http://dx.doi.org/10.1007/s00778-010-
0183-9.

[21] S. Heinz, J. Zobel, H.E. Williams, Burst tries: a fast, efficient data structure for
string keys, ACM Trans. Inf. Syst. 20 (2) (2002) 192–223, http://dx.doi.org/10.
1145/506309.506312.

[22] T. Takagi, S. Inenaga, K. Sadakane, H. Arimura, Packed compact tries: a fast
and efficient data structure for online string processing, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. 100-A (9) (2017) 1785–1793, http://dx.doi.org/
10.1587/transfun.E100.A.1785.

[23] P. Bille, I.L. Gørtz, F.R. Skjoldjensen, Deterministic indexing for packed strings,
in: Proc. 28th Annual Symposium on Combinatorial Pattern Matching, CPM, 78,
2017, pp. 6:1–6:11, http://dx.doi.org/10.4230/LIPIcs.CPM.2017.6.

[24] K. Tsuruta, D. Köppl, S. Kanda, Y. Nakashima, S. Inenaga, H. Bannai, M. Takeda,
c-trie++: a dynamic trie tailored for fast prefix searches, Inform. and Comput.
285 (2022) 104794, http://dx.doi.org/10.1016/j.ic.2021.104794.

https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
https://github.com/aboffa/CoCo-trie
http://www.sobigdata.eu
http://dx.doi.org/10.1145/2488388.2488440
http://dx.doi.org/10.1145/3397271.3401432
http://dx.doi.org/10.1145/3397271.3401432
http://dx.doi.org/10.1145/3397271.3401432
http://dx.doi.org/10.1145/3437963.3441725
http://dx.doi.org/10.1007/978-3-319-18818-8_9
http://dx.doi.org/10.1007/978-3-319-18818-8_9
http://dx.doi.org/10.1007/978-3-319-18818-8_9
http://dx.doi.org/10.1145/3183713.3196931
http://dx.doi.org/10.1145/3318464.3389731
http://dx.doi.org/10.1145/3318464.3389731
http://dx.doi.org/10.1145/3318464.3389731
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/1365815.1365816
http://dx.doi.org/10.1145/2810036
http://dx.doi.org/10.1145/2810036
http://dx.doi.org/10.1145/2810036
http://dx.doi.org/10.1017/CBO9781139940023
http://dx.doi.org/10.1017/CBO9781139940023
http://dx.doi.org/10.1017/CBO9781139940023
http://dx.doi.org/10.1145/1935826.1935857
http://dx.doi.org/10.1145/3077136.3080798
http://dx.doi.org/10.1145/3077136.3080798
http://dx.doi.org/10.1145/3077136.3080798
http://dx.doi.org/10.1145/1376916.1376943
http://dx.doi.org/10.1145/1376916.1376943
http://dx.doi.org/10.1145/1376916.1376943
http://dx.doi.org/10.1007/s00778-019-00555-y
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb14
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb14
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb14
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1145/321479.321481
http://dx.doi.org/10.1145/3418033
http://dx.doi.org/10.1145/3418033
http://dx.doi.org/10.1145/3418033
http://dx.doi.org/10.1145/2656332
https://github.com/ot/path_decomposed_tries
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb18
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb18
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb18
http://dx.doi.org/10.1007/3-540-48518-X_18
http://dx.doi.org/10.1007/s00778-010-0183-9
http://dx.doi.org/10.1007/s00778-010-0183-9
http://dx.doi.org/10.1007/s00778-010-0183-9
http://dx.doi.org/10.1145/506309.506312
http://dx.doi.org/10.1145/506309.506312
http://dx.doi.org/10.1145/506309.506312
http://dx.doi.org/10.1587/transfun.E100.A.1785
http://dx.doi.org/10.1587/transfun.E100.A.1785
http://dx.doi.org/10.1587/transfun.E100.A.1785
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.6
http://dx.doi.org/10.1016/j.ic.2021.104794

Information Systems 120 (2024) 102316A. Boffa et al.
[25] J.J. Darragh, J.G. Cleary, I.H. Witten, Bonsai: a compact representation of
trees, Softw. - Pract. Exp. 23 (3) (1993) 277–291, http://dx.doi.org/10.1002/
spe.4380230305.

[26] J.L. Bentley, R. Sedgewick, Fast algorithms for sorting and searching strings, in:
Proc. 8th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 1997,
pp. 360–369, http://dx.doi.org/10.5555/314161.314321.

[27] Y. Mao, E. Kohler, R.T. Morris, Cache craftiness for fast multicore key-value
storage, in: Proc. 7th European Conference on Computer Systems, EuroSys, 2012,
pp. 183–196, http://dx.doi.org/10.1145/2168836.2168855.

[28] S. Yata, Dictionary compression by nesting prefix/patricia tries, in: Proc. 17th
Meeting of the Association for Natural Language, 2011.

[29] V. Leis, A. Kemper, T. Neumann, The adaptive radix tree: ARTful indexing
for main-memory databases, in: Proc. 29th IEEE International Conference on
Data Engineering, ICDE, 2013, pp. 38–49, http://dx.doi.org/10.1109/ICDE.2013.
6544812.

[30] A. Poyias, S.J. Puglisi, R. Raman, m-Bonsai: a practical compact dynamic trie,
Internat. J. Found Comput. Sci. 29 (8) (2018) 1257–1278, http://dx.doi.org/10.
1142/S0129054118430025.

[31] P. Ferragina, F. Luccio, G. Manzini, S. Muthukrishnan, Compressing and indexing
labeled trees, with applications, J. ACM 57 (1) (2009) 4:1–4:33, http://dx.doi.
org/10.1145/1613676.1613680.

[32] P. Ferragina, R. Venturini, The compressed permuterm index, ACM Trans.
Algorithms 7 (1) (2010) 10:1–10:21, http://dx.doi.org/10.1145/1868237.
1868248.

[33] P. Ferragina, R. Grossi, The string B-tree: a new data structure for string
search in external memory and its applications, J. ACM 46 (2) (1999) 236–280,
http://dx.doi.org/10.1145/301970.301973.

[34] M.A. Bender, M. Farach-Colton, B.C. Kuszmaul, Cache-oblivious string B-trees,
in: Proc. 25th ACM Symposium on Principles of Database Systems, PODS, 2006,
pp. 233–242, http://dx.doi.org/10.1145/1142351.1142385.

[35] P. Ferragina, R. Venturini, Compressed cache-oblivious string B-tree, ACM Trans.
Algorithms 12 (4) (2016) 52:1–52:17, http://dx.doi.org/10.1145/2903141.

[36] P. Ferragina, M. Frasca, G.C. Marinò, G. Vinciguerra, On nonlinear learned
string indexing, IEEE Access 11 (2023) 74021–74034, http://dx.doi.org/10.1109/
ACCESS.2023.3295434.

[37] M.A. Martínez-Prieto, N.R. Brisaboa, R. Cánovas, F. Claude, G. Navarro, Practical
compressed string dictionaries, Inf. Syst. 56 (2016) 73–108, http://dx.doi.org/
10.1016/j.is.2015.08.008.

[38] J. Arz, J. Fischer, Lempel-Ziv-78 compressed string dictionaries, Algorithmica 80
(7) (2018) 2012–2047, http://dx.doi.org/10.1007/s00453-017-0348-7.

[39] R. Binna, E. Zangerle, M. Pichl, G. Specht, V. Leis, HOT: a height optimized trie
index for main-memory database systems, in: Proc. ACM International Conference
on Management of Data, SIGMOD, 2018, pp. 521–534, http://dx.doi.org/10.
1145/3183713.3196896.

[40] N.R. Brisaboa, A. Cerdeira-Pena, G. de Bernardo, G. Navarro, Improved com-
pressed string dictionaries, in: Proc. 28th ACM International Conference on
Information and Knowledge Management, CIKM, 2019, pp. 29–38, http://dx.
doi.org/10.1145/3357384.3357972.

[41] H. Zhang, D.G. Andersen, A. Pavlo, M. Kaminsky, L. Ma, R. Shen, Reducing
the storage overhead of main-memory OLTP databases with hybrid indexes, in:
Proc. ACM International Conference on Management of Data, SIGMOD, 2016,
pp. 1567–1581, http://dx.doi.org/10.1145/2882903.2915222.

[42] A. Boffa, P. Ferragina, F. Tosoni, G. Vinciguerra, Compressed string dictionaries
via data-aware subtrie compaction, in: Proc. 29th International Symposium on
String Processing and Information Retrieval, SPIRE, 2022, pp. 233–249, http:
//dx.doi.org/10.1007/978-3-031-20643-6_17.

[43] R. De La Briandais, File searching using variable length keys, in: Proc. Western
Joint Computer Conference, 1959, pp. 295–298, http://dx.doi.org/10.1145/
1457838.1457895.

[44] S. Sahni, Tries, in: D.P. Mehta, S. Sahni (Eds.), Handbook of Data Structures
and Applications, Chapman and Hall/CRC, 2004, http://dx.doi.org/10.1201/
9781420035179.pt5.

[45] P. Boldi, A. Marino, M. Santini, S. Vigna, BUbiNG: massive crawling for the
masses, ACM Trans. Web 12 (2) (2018) http://dx.doi.org/10.1145/3160017.

[46] Pizza&Chili corpus, 2023, URL http://pizzachili.dcc.uchile.cl/texts.html. (Ac-
cessed June 2022).

[47] R.O. Nambiar, M. Poess, The making of TPC-DS, in: Proc. 32nd International
Conference on Very Large Data Bases, VLDB, 2006, pp. 1049–1058, URL http:
//www.tpc.org/tpcds/.

[48] D. Belazzougui, P. Boldi, R. Pagh, S. Vigna, Theory and practice of monotone
minimal perfect hashing, ACM J. Exp. Algorithmics 16 (2008) http://dx.doi.org/
10.1145/1963190.2025378.

[49] P. Ferragina, M. Rotundo, G. Vinciguerra, Engineering a textbook approach
to index massive string dictionaries, in: Proc. 30th International Symposium
on String Processing and Information Retrieval, SPIRE, 2023, pp. 203–217,
http://dx.doi.org/10.1007/978-3-031-43980-3_16.

[50] D. Baskins, A 10-minute description of how Judy arrays work and why they are
so fast, 2002, URL http://judy.sourceforge.net/doc/10minutes.htm.

[51] J.-I. Aoe, K. Morimoto, T. Sato, An efficient implementation of trie structures,
Softw. - Pract. Exp. 22 (9) (1992) 695–721, http://dx.doi.org/10.1002/spe.
4380220902.
15
[52] S. Kanda, K. Morita, M. Fuketa, Compressed double-array tries for string
dictionaries supporting fast lookup, Knowl. Inf. Syst. 51 (3) (2017) 1023–1042,
http://dx.doi.org/10.1007/s10115-016-0999-8.

[53] N. Askitis, J. Zobel, Cache-conscious collision resolution in string hash tables,
in: Proc. 12th International Conference on String Processing and Information
Retrieval, SPIRE, 2005, pp. 91–102, http://dx.doi.org/10.1007/11575832_11.

[54] D. Belazzougui, P. Boldi, S. Vigna, Dynamic Z-fast tries, in: Proc. 17th Interna-
tional Symposium on String Processing and Information Retrieval, SPIRE, 2010,
pp. 159–172, http://dx.doi.org/10.1007/978-3-642-16321-0_15.

[55] D.D. Sleator, R.E. Tarjan, A data structure for dynamic trees, J. Comput. System
Sci. 26 (3) (1983) 362–391, http://dx.doi.org/10.1016/0022-0000(83)90006-5.

[56] G. Navarro, Compact Data Structures: A Practical Approach, Cambridge
University Press, 2016, http://dx.doi.org/10.1017/CBO9781316588284.

[57] G. Jacobson, Space-efficient static trees and graphs, in: Proc. 30th IEEE Sym-
posium on Foundations of Computer Science, FOCS, 1989, pp. 549–554, http:
//dx.doi.org/10.1109/SFCS.1989.63533.

[58] M. Burrows, D.J. Wheeler, A Block-Sorting Lossless Data Compression Algorithm,
Tech. Rep. 124, Digital Equipment Corporation, 1994.

[59] C.D. Manning, P. Raghavan, H. Schütze, Introduction to Information
Retrieval, Cambridge University Press, 2008, http://dx.doi.org/10.1017/
CBO9780511809071.

[60] G. Navarro, Indexing highly repetitive string collections, part II: compressed
indexes, ACM Comput. Surv. 54 (2) (2020) http://dx.doi.org/10.1145/3432999.

[61] G. Navarro, V. Mäkinen, Compressed full-text indexes, ACM Comput. Surv. 39
(1) (2007).

[62] D. Belazzougui, P. Boldi, R. Pagh, S. Vigna, Monotone minimal perfect hashing:
searching a sorted table with 𝑂(1) accesses, in: Proc. 20th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2009, pp. 785–794, http://dx.doi.
org/10.5555/1496770.1496856.

[63] P. Elias, Efficient storage and retrieval by content and address of static files, J.
ACM 21 (2) (1974) 246–260, http://dx.doi.org/10.1145/321812.321820.

[64] R.M. Fano, On the Number of Bits Required To Implement an Associative
Memory. Memo 61, Massachusetts Institute of Technology, Project MAC, 1971.

[65] F. Silvestri, R. Venturini, VSEncoding: efficient coding and fast decoding of
integer lists via dynamic programming, in: Proc. 19th ACM International Confer-
ence on Information and Knowledge Management, CIKM, 2010, pp. 1219–1228,
http://dx.doi.org/10.1145/1871437.1871592.

[66] G. Ottaviano, R. Venturini, Partitioned Elias-Fano indexes, in: Proc. 37th ACM
International Conference on Research and Development in Information Retrieval,
SIGIR, 2014, pp. 273–282, http://dx.doi.org/10.1145/2600428.2609615.

[67] J. Kärkkäinen, D. Kempa, S.J. Puglisi, Hybrid compression of bitvectors for the
FM-index, in: Proc. 24th Data Compression Conference, DCC, 2014, pp. 302–311,
http://dx.doi.org/10.1109/DCC.2014.87.

[68] A. Boffa, P. Ferragina, G. Vinciguerra, A learned approach to design compressed
rank/select data structures, ACM Trans. Algorithms (2022) http://dx.doi.org/10.
1145/3524060.

[69] P. Ferragina, G. Manzini, G. Vinciguerra, Compressing and querying inte-
ger dictionaries under linearities and repetitions, IEEE Access 10 (2022)
118831–118848, http://dx.doi.org/10.1109/ACCESS.2022.3221520.

[70] F. Claude, G. Navarro, Practical rank/select queries over arbitrary sequences, in:
Proc. 15th International Symposium on String Processing and Information Re-
trieval, SPIRE, 2008, pp. 176–187, http://dx.doi.org/10.1007/978-3-540-89097-
3_18.

[71] P. Pandey, M.A. Bender, R. Johnson, R. Patro, A general-purpose counting
filter: making every bit count, in: Proc. ACM International Conference on
Management of Data, SIGMOD, 2017, pp. 775–787, http://dx.doi.org/10.1145/
3035918.3035963.

[72] S. Gog, T. Beller, A. Moffat, M. Petri, From theory to practice: plug and
play with succinct data structures, in: Proc. 13th International Symposium on
Experimental Algorithms, SEA, 2014, pp. 326–337, http://dx.doi.org/10.1007/
978-3-319-07959-2_28.

[73] G. Ottaviano, N. Tonellotto, R. Venturini, Optimal space-time tradeoffs for
inverted indexes, in: Proc. 8th ACM International Conference on Web Search
and Data Mining, WSDM, 2015, pp. 47–56, http://dx.doi.org/10.1145/2684822.
2685297.

[74] S. Vigna, Broadword implementation of rank/select queries, in: Proc. 7th
International Workshop on Experimental Algorithms, WEA, 2008, pp. 154–168,
http://dx.doi.org/10.1007/978-3-540-68552-4_12.

[75] F. Kurpicz, Engineering compact data structures for rank and select queries on
bit vectors, in: Proc. 29th International Symposium on String Processing and
Information Retrieval, SPIRE, 2022, pp. 257–272, http://dx.doi.org/10.1007/
978-3-031-20643-6_19.

[76] M. Pöss, R.O. Nambiar, D. Walrath, Why you should run TPC-DS: a workload
analysis, in: Proc. 33rd International Conference on Very Large Data Bases, VLDB,
2007, pp. 1138–1149.

[77] M. Boissier, Robust and budget-constrained encoding configurations for in-
memory database systems, PVLDB 15 (4) (2022) 780–793, http://dx.doi.org/
10.14778/3503585.3503588.

http://dx.doi.org/10.1002/spe.4380230305
http://dx.doi.org/10.1002/spe.4380230305
http://dx.doi.org/10.1002/spe.4380230305
http://dx.doi.org/10.5555/314161.314321
http://dx.doi.org/10.1145/2168836.2168855
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb28
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb28
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb28
http://dx.doi.org/10.1109/ICDE.2013.6544812
http://dx.doi.org/10.1109/ICDE.2013.6544812
http://dx.doi.org/10.1109/ICDE.2013.6544812
http://dx.doi.org/10.1142/S0129054118430025
http://dx.doi.org/10.1142/S0129054118430025
http://dx.doi.org/10.1142/S0129054118430025
http://dx.doi.org/10.1145/1613676.1613680
http://dx.doi.org/10.1145/1613676.1613680
http://dx.doi.org/10.1145/1613676.1613680
http://dx.doi.org/10.1145/1868237.1868248
http://dx.doi.org/10.1145/1868237.1868248
http://dx.doi.org/10.1145/1868237.1868248
http://dx.doi.org/10.1145/301970.301973
http://dx.doi.org/10.1145/1142351.1142385
http://dx.doi.org/10.1145/2903141
http://dx.doi.org/10.1109/ACCESS.2023.3295434
http://dx.doi.org/10.1109/ACCESS.2023.3295434
http://dx.doi.org/10.1109/ACCESS.2023.3295434
http://dx.doi.org/10.1016/j.is.2015.08.008
http://dx.doi.org/10.1016/j.is.2015.08.008
http://dx.doi.org/10.1016/j.is.2015.08.008
http://dx.doi.org/10.1007/s00453-017-0348-7
http://dx.doi.org/10.1145/3183713.3196896
http://dx.doi.org/10.1145/3183713.3196896
http://dx.doi.org/10.1145/3183713.3196896
http://dx.doi.org/10.1145/3357384.3357972
http://dx.doi.org/10.1145/3357384.3357972
http://dx.doi.org/10.1145/3357384.3357972
http://dx.doi.org/10.1145/2882903.2915222
http://dx.doi.org/10.1007/978-3-031-20643-6_17
http://dx.doi.org/10.1007/978-3-031-20643-6_17
http://dx.doi.org/10.1007/978-3-031-20643-6_17
http://dx.doi.org/10.1145/1457838.1457895
http://dx.doi.org/10.1145/1457838.1457895
http://dx.doi.org/10.1145/1457838.1457895
http://dx.doi.org/10.1201/9781420035179.pt5
http://dx.doi.org/10.1201/9781420035179.pt5
http://dx.doi.org/10.1201/9781420035179.pt5
http://dx.doi.org/10.1145/3160017
http://pizzachili.dcc.uchile.cl/texts.html
http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/
http://www.tpc.org/tpcds/
http://dx.doi.org/10.1145/1963190.2025378
http://dx.doi.org/10.1145/1963190.2025378
http://dx.doi.org/10.1145/1963190.2025378
http://dx.doi.org/10.1007/978-3-031-43980-3_16
http://judy.sourceforge.net/doc/10minutes.htm
http://dx.doi.org/10.1002/spe.4380220902
http://dx.doi.org/10.1002/spe.4380220902
http://dx.doi.org/10.1002/spe.4380220902
http://dx.doi.org/10.1007/s10115-016-0999-8
http://dx.doi.org/10.1007/11575832_11
http://dx.doi.org/10.1007/978-3-642-16321-0_15
http://dx.doi.org/10.1016/0022-0000(83)90006-5
http://dx.doi.org/10.1017/CBO9781316588284
http://dx.doi.org/10.1109/SFCS.1989.63533
http://dx.doi.org/10.1109/SFCS.1989.63533
http://dx.doi.org/10.1109/SFCS.1989.63533
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb58
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb58
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb58
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1145/3432999
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb61
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb61
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb61
http://dx.doi.org/10.5555/1496770.1496856
http://dx.doi.org/10.5555/1496770.1496856
http://dx.doi.org/10.5555/1496770.1496856
http://dx.doi.org/10.1145/321812.321820
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb64
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb64
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb64
http://dx.doi.org/10.1145/1871437.1871592
http://dx.doi.org/10.1145/2600428.2609615
http://dx.doi.org/10.1109/DCC.2014.87
http://dx.doi.org/10.1145/3524060
http://dx.doi.org/10.1145/3524060
http://dx.doi.org/10.1145/3524060
http://dx.doi.org/10.1109/ACCESS.2022.3221520
http://dx.doi.org/10.1007/978-3-540-89097-3_18
http://dx.doi.org/10.1007/978-3-540-89097-3_18
http://dx.doi.org/10.1007/978-3-540-89097-3_18
http://dx.doi.org/10.1145/3035918.3035963
http://dx.doi.org/10.1145/3035918.3035963
http://dx.doi.org/10.1145/3035918.3035963
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1007/978-3-319-07959-2_28
http://dx.doi.org/10.1145/2684822.2685297
http://dx.doi.org/10.1145/2684822.2685297
http://dx.doi.org/10.1145/2684822.2685297
http://dx.doi.org/10.1007/978-3-540-68552-4_12
http://dx.doi.org/10.1007/978-3-031-20643-6_19
http://dx.doi.org/10.1007/978-3-031-20643-6_19
http://dx.doi.org/10.1007/978-3-031-20643-6_19
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb76
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb76
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb76
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb76
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb76
http://dx.doi.org/10.14778/3503585.3503588
http://dx.doi.org/10.14778/3503585.3503588
http://dx.doi.org/10.14778/3503585.3503588

Information Systems 120 (2024) 102316A. Boffa et al.
[78] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, T. Neumann,
Query optimization through the looking glass, and what we found running the
join order benchmark, VLDB J. 27 (5) (2018) 643–668, http://dx.doi.org/10.
1007/s00778-017-0480-7.

[79] H. Garcia-Molina, J.D. Ullman, J. Widom, Database Systems: The Complete Book,
second ed., Prentice Hall Press, 2008.
16
[80] ART and CART implementations, 2023, URL https://github.com/efficient/fast-
succinct-trie/tree/master/third-party/art. (Accessed June 2022).

[81] H.E. Williams, J. Zobel, Compressing integers for fast file access, Comput. J. 42
(3) (1999) 193–201, http://dx.doi.org/10.1093/comjnl/42.3.193.

[82] FST implementation, 2023, URL https://github.com/kampersanda/fast_succinct_
trie. (Accessed June 2022).

http://dx.doi.org/10.1007/s00778-017-0480-7
http://dx.doi.org/10.1007/s00778-017-0480-7
http://dx.doi.org/10.1007/s00778-017-0480-7
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb79
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb79
http://refhub.elsevier.com/S0306-4379(23)00152-7/sb79
https://github.com/efficient/fast-succinct-trie/tree/master/third-party/art
https://github.com/efficient/fast-succinct-trie/tree/master/third-party/art
https://github.com/efficient/fast-succinct-trie/tree/master/third-party/art
http://dx.doi.org/10.1093/comjnl/42.3.193
https://github.com/kampersanda/fast_succinct_trie
https://github.com/kampersanda/fast_succinct_trie
https://github.com/kampersanda/fast_succinct_trie

	CoCo-trie: Data-aware compression and indexing of strings
	Introduction
	Our contribution

	Related work
	A motivating example
	CoCo-trie: Compressed Collapsed Trie
	Compressed encoding of collapsed subtries
	On the choice of the subtries to collapse
	CoCo-trie with the Elias-Fano code: an analysis
	Our optimisation approach

	A pool of succinct encoding schemes
	Squeezing the universe of the macro-characters
	Dealing with the space–time trade-off
	Query operations

	Experiments
	Implementation notes
	Experimental setting
	Datasets
	State-of-the-art competitors
	Query workloads

	An analysis of the CoCo-trie design
	Distribution of the number of collapsed levels
	Effectiveness of the alphabet-aware encoding
	Effectiveness of the space-relaxation technique
	Breakdown of the space taken by the CoCo-trie components
	Construction time

	Space–time performance comparison
	Impact of the query workload

	Conclusions and future work
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

