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Abstract. String dictionaries are a core component of a plethora of ap-
plications, so it is not surprising that they have been widely and deeply
investigated in the literature since the introduction of tries in the ’60s.
We introduce a new approach to trie compression, called COmpressed
COllapsed Trie (CoCo-trie), that hinges upon a data-aware optimisation
scheme that selects the best subtries to collapse based on a pool of suc-
cinct encoding schemes in order to minimise the overall space occupancy.
CoCo-trie supports not only the classic lookup query but also the more
sophisticated rank operation, formulated over a sorted set of strings.
We corroborate our theoretical achievements with a large set of exper-
iments over datasets originating from a variety of sources, e.g., URLs,
DNA sequences, and databases. We show that our CoCo-trie provides im-
proved space-time trade-offs on all those datasets when compared against
well-established and highly-engineered trie-based string dictionaries.

Keywords: String dictionaries · Tries · Compressed data structures.

1 Introduction

Let S be a sorted set of n variable-length strings s1, s2, . . . , sn drawn from an
alphabet Σ = {1, 2, . . . , σ}. The String Dictionary problem consists of storing S
in a compressed format while supporting the rank operation that returns the
number of strings in S lexicographically smaller than or equal to a pattern P [1, p].

Some other classic operations such as lookup(P ) (returning a unique stringID
for P if P ∈ S, and −1 otherwise), access(i) (returning the string in S having
stringID i), predecessor(P ) (returning the lexicographically largest string in S
smaller than P ), prefix range(P ) (returning all strings in S that are prefixed
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by P ), longest prefix match(P ) (returning the longest prefix of P which is
shared with one of the strings in S) can be implemented through the rank

operation, possibly using compact auxiliary data structures [19].
String dictionaries constitute a core component of a plethora of applica-

tions such as query auto-completion engines [23, 26, 29], RDF and key-value
stores [36, 50], computational biology tools [5, 33], and n-gram language mod-
els [27, 42], just to mention a few. They are typically approached via the trie
data structure, which dates back to the ’60s [31, §6.3]. Since then, researchers
have put a lot of effort to improve the time and space efficiency of the näıve
pointer-based implementation. Some solutions compact paths [19, 24, 28, 37] or
subtrees [4,7,10,25,40,45,46], succinctly encode node fan-outs [9,15,32,34,43,48],
apply sophisticated string transformations [20, 21] or proper disk-based lay-
outs [8,18,22]. Many recent results aim at reducing further the space occupancy
of tries without impairing their efficient query time via sophisticated compression
techniques (see e.g. [4,6,10,11,14,28,35,43,45,46,50]). As a result, this plethora of
proposals offers different space-time trade-offs over various datasets, but without
a clear winner. Choosing the appropriate storage solution is indeed quite a daunt-
ing task, requiring specific expertise and accurate analysis of the input datasets.

In this paper, we tackle this long-standing problem by introducing a fully-new
approach that exploits a principled and data-aware optimisation strategy to col-
lapse and compress subtries. More precisely, we make the following contributions:

• We revisit the subtrie compaction technique by introducing a novel representa-
tion that encodes a collapsed subtrie via standard integer compressors. Then,
by means of a concrete motivating example, we observe that the effectiveness
of this compressed representation depends upon the “shape” of the collapsed
subtrie and its possibly long “edge labels” (Section 2).

• In light of this, we propose a new data structure, called CoCo-trie, which
stands for COmpressed and COllapsed trie.1 It orchestrates three main tools:
the above novel representation for collapsed subtries, a pool of succinct en-
coding schemes to compress the edge labels, and an optimisation procedure
that selects the best subtries to collapse into macro-nodes to minimise the
overall occupied space while guaranteeing efficient queries due to the shorter
trie traversal and the efficiently-searchable encoding schemes (Section 3).

• We corroborate our theoretical results with an experimental evaluation on sev-
eral datasets with different characteristics originating from a variety of sources
(e.g. URLs, XML, DNA sequences, and databases) and against five well-
established and highly-engineered competitors (namely, ART [32], CART [49],
ctrie++ [46], FST [50], and PDT [24]). To the best of our knowledge, this is the
very first work experimenting with all these implementations together over a
wide variety of datasets. Our results show that CoCo-trie is a robust and flex-
ible data structure since: in two cases, it significantly improves the space-time
performance of all competitors; in two other cases, it is on the Pareto frontier
of the best approaches (thus offering new competitive space-time trade-offs);
and, in the last case, it is very close to the Pareto frontier (Section 4).

1 The source code is publicly available at https://github.com/aboffa/CoCo-trie.

https://github.com/aboffa/CoCo-trie
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Fig. 1. Two tries A and B built on two sets of four strings each: {AG,AT,CA,CC} on
the left, and {AA,AC, ξξ′, ξξ} on the right. A uses just four alphabet symbols, and B
uses a much larger alphabet in which ξ′ and ξ are the last two symbols.

2 A motivating example

“Subtrie compaction” is a common technique in the design of compressed string
dictionaries. However, it has been mainly investigated in the restricted context
of either bounding the subtrie height, to fit the branching substring into one
machine word [10, 45, 46]; or when bounding the macro-node fan-out so that
more space-time efficient data structures can be used for it [7, 11,25].

In what follows, we firstly introduce a novel macro-node representation, and
then we provide a concrete example of the impact this technique can have on the
space-time efficiency of the resulting trie representation. Our technique consists
of properly choosing (i) the heights of the subtries to collapse into macro-nodes,
and (ii) the coding mechanisms to represent the corresponding branching sub-
strings (associated with the collapsed edge labels).

Consider the tries A and B of Figure 1 built respectively on the string sets
S1 = {AG,AT,CA,CC} and S2 = {AA,AC, ξξ′, ξξ}, where ξ denotes the last
symbol in a (potentially large) alphabet Σ, and ξ′ denotes the symbol preceding ξ
in Σ. In A, the alphabet {A,C,G,T} consists of just 4 symbols, so we need 2 bits
to represent them. In B, the alphabet is assumed to be Σ = {A,C, . . . , ξ′, ξ} and
its symbols can be represented with b = ⌈log2 |Σ|⌉ bits.

Let us now consider two scenarios for both of the tries above: one in which the
trie T ∈ {A,B} succinctly encodes the individual branching symbols; the other
one in which the two levels of T are collapsed at the root node, thereby creating a
macro-root T c with branching macro-symbols of length 2 symbols. For evaluating
the space cost of encoding T and T c we consider the following succinct scheme:
for every node in level order, we store the first branching symbol explicitly and
then encode the gap between successive symbols using some coding tool, say
γ-code (see Appendix A for the definition of γ-code and the full calculations). If
we refer, say, to the root of A, its two branching symbols, namely A and C, are
encoded in 3 bits as enc(A) = 00, followed by γ(C−A) = γ(01− 00) = 1.

The encoding of A takes 9 bits, while if we collapse the two levels of A in the
root of Ac, this root gets four children whose edge labels are {AG,AT,CA,CC},
and their succinct representation takes 7 bits. Hence, the representation of A
takes more space than the one of Ac. Surprisingly, one comes to the opposite
conclusion with B, despite having the same topology of A. Here, the larger alpha-
bet together with the different distribution of the edge labels changes the optimal
choice. Indeed, the encoding of B takes at most 5b+ 1 bits, while the one of Bc
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takes 6b−1 bits. Hence, it is better not to collapse B because its succinct encoding
takes b bits less than the one of Bc, and b can make this gap arbitrarily large.

This example shows there is no a priori best choice about which subtrie to
collapse, thus opening a significant deal of possible improvements to the known
trie representations. In particular, the “best” choice depends upon several fea-
tures, such as the trie structure, the number of distinct branching symbols at
each node and their distribution among the trie edges. Consequently, designing
a principled approach to finding that “best” choice for each trie node is quite a
complex task, that we rigorously investigate throughout the rest of the paper.

3 CoCo-trie: Compressed Collapsed Trie

The simplest and most used approach to collapsing tries is to obtain the trie Tℓ
by collapsing ℓ levels of the subtries rooted at the nodes whose distances from
the root of T are multiple of ℓ. In this way, one can seek for a pattern P [1, p]
over Tℓ by traversing at most p/ℓ (macro-)nodes and edges, that is, p/ℓ branches
over (macro-)characters (e.g., in [10, 45, 46], ℓ is the number of characters that
fit into a RAM word). Obviously, increasing ℓ reduces the number of branching
steps, but it may increase (i) the computational cost of each individual step,
given that the number and the length of the branching characters increase; and,
(ii) the space occupancy of the overall trie, given that shared paths within the
collapsed subtries are turned into distinct substrings by macro-characters (see
e.g. the paths “e$” and “es” descending from v in Figure 2, which share “e”).

Our proposal addresses three main questions:

Q1: Can we tackle in a principled algorithmic way the issues (i) and (ii) above
as ℓ increases?

Q2: How does the choice about the number ℓ of levels to collapse depend on
the dictionary of strings?

Q3: Should the choice of ℓ be global, and thus unique to the entire trie, or should
it be local, and thus vary among trie nodes?

These questions admit surprising answers in theory, which have equally-surprising
impacts in practice. In particular, we will:

• answer Q1 affirmatively, by resorting to a pool of succinct encoding schemes
to compress the possibly long edge labels (i.e., branching macro-characters);

• show for Q2 that the choice for ℓ has to account for the topology and edge
labelling of the trie T , and thus the characteristics of its indexed strings;

• show for Q3 that one has to find locally, i.e., node by node, the best value
of ℓ, via a suitably-designed optimisation procedure aimed at minimising the
overall space occupancy.

Our algorithmic answer consists of six main steps. Firstly, we introduce a
novel compressed encoding for the collapsed subtries (Section 3.1). Secondly,
we provide an optimisation procedure to choose the subtries to collapse (Sec-
tion 3.2). Thirdly, we show how to select the best compression scheme for each
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Fig. 2. Collapsing ℓ = 2 levels of the subtrie rooted at v.

collapsed subtrie in a data-aware manner (Section 3.3). Fourthly, we present a
further compression step that exploits the local alphabet of the edge labels in the
collapsed subtrie (Section 3.4). Fifthly, we show how to trade space occupancy
with query time (Section 3.5). Sixthly, we describe how to implement the rank

operation over the resulting compressed trie structure (Section 3.6).

3.1 Compressed encoding of collapsed subtries

Let us be given a trie T whose edges are drawn from an integer alphabet Σ =
{0, . . . , σ − 1} and sorted increasingly at each node. The special character 0
(indicated with $) is the string terminator. We formalise the notion of collapsed
subtries as follows.

Definition 1. Given an internal node v of a trie T and an integer ℓ ≥ 1, the
collapsing of ℓ levels of the subtrie of T rooted at v consists in replacing this
subtrie with a macro-node vℓ such that (i) the substrings branching out of vℓ
are the ones corresponding to the paths of length ℓ descending from v in T , and
(ii) the children of vℓ are the nodes at distance ℓ from v. If branching substrings
are shorter than ℓ, we pad them with the character $.

This is depicted in Figure 2, where five paths of length ℓ = 2 are collapsed
to form the five branching edges {at, e$, es, is, os} of vℓ.

To encode a string s branching out of vℓ, we initially right-pad it with ℓ− |s|
characters $ if |s| < ℓ; then, we assign it the integer

encℓ(s) =

ℓ∑

i=1

s[i] · σℓ−i. (1)

Intuitively, we interpret encℓ(s) as a branching macro-character of vℓ drawn
from the integer alphabet Σℓ = {0, . . . , σℓ − 1}.

Furthermore, we observe that encℓ is monotonic, i.e., given two strings s′ and
s′′ such that s′ is lexicographically smaller than s′′, then encℓ(s

′) < encℓ(s
′′).

After computing each branching macro-character, we need to define a com-
pression scheme that guarantees efficient access to edge labels, so to support fast
pattern searches over the resulting collapsed trie. Let us assume that a macro-
node vℓ has m branching macro-characters, indicated with civℓ for i = 1, 2, . . . ,m.
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We explicitly encode the first macro-character x = c1vℓ using a fixed-size repre-

sentation taking log σℓ bits,2 and we represent the other m−1 macro-characters
by encoding the sequence civℓ − x for i = 2, . . . ,m with Elias-Fano (EF) [16,17],
which takes (m− 1)(2+ log u

m−1 ) bits, where u = cmvℓ − c1vℓ is the universe size of
the sequence. To decompress the EF sequence, we also need to store some small

metadata taking log log u
m ≤ log log σℓ

m bits.
One should notice that other integer encoding schemes could be used in place

of EF, and indeed we do so in Section 3.3.
Summing up, the space occupancy of the collapsed and compressed macro-

node vℓ is (excluding EF’s metadata)

C(vℓ) = log σℓ + (m− 1)

(
2 + log

u

m− 1

)
+ 2 bits, (2)

where the first term corresponds to the space for the first macro-character, the
second term accounts for the space to store the (m− 1) EF-coded integers, and
the last 2 bits account for the contribution of the node vℓ to the space required
by a succinct trie representation (we use LOUDS [39, §8.1]).

We underline that the subtraction of x has a subtle (yet paramount) impact
on the space occupancy of our trie representation. It indeed removes any possible
redundancy given by the longest common prefix (shortly, lcp) among the branch-
ing macro-characters. For instance, if we have ℓ = 2 and the four branching
macro-characters {ha,he,hi,ho}, then our encoding scheme stores x = encℓ(ha)
explicitly as the integer h ·σ1+a ·σ0, and it encodes the following three branch-
ing macro-characters {he,hi,ho} as the difference with x, i.e., it encodes “he”
as encℓ(he) = (h · σ1 + e · σ0) − x = (h · σ1 + e · σ0)− (h · σ1 + a · σ0) = e− a.
So our encoding scheme stores the lcp “h” only once in x, thereby getting rid of
much redundancy in the edge labels, and saving a big deal of space, especially
when ℓ gets longer. As a matter of fact, we are reducing the value of the integers
encℓ(civℓ), which are upper-bounded by σℓ, to the values encℓ(civℓ)− encℓ(c1vℓ),

which are upper-bounded by σℓ−lcp.

3.2 On the choice of the subtries to collapse

We now get down to the details of our algorithm that, given an input trie T ,
identifies which subtries of T to collapse (and for which height ℓ each one), in
order to minimise the space occupancy of the resulting representation.

Our algorithm performs a post-order traversal of T , starting from the root.
Let h(v) denote the height of the subtrie rooted at v (and reaching its descending
leaves in T ). For each node v, the algorithm evaluates the cost of encoding the
entire subtrie descending from v by taking into account the space cost C(vℓ) of
Eq. (2) referring to the subtrie of v limited to height ℓ, plus the optimal space
cost C∗(d) of encoding recursively the entire subtries hanging from the nodes d
descending from v at distance ℓ. We vary ℓ = 1, . . . , h(v), thereby determining the

2 We omit ceilings for the sake of simplicity.
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minimum space occupancy C∗(v). Formally, if desc(v, ℓ) is the set of descendants
of v at distance ℓ (recall that ℓ ≤ h(v)), we have

C∗(v) = min
ℓ=1,...,h(v)

{
C(vℓ) +

∑

d∈desc(v,ℓ)

C∗(d)

}
. (3)

Note that if v is a leaf, we simply set C∗(v) = C(v1) = 2, since a leaf cannot be
collapsed and its cost in the LOUDS representation is 2 bits. Clearly, because of
the post-order visit, the values C∗(d) are available whenever we compute C∗(v).

When the root of T is eventually visited, the topology and the encoding of
all (macro-)nodes of our CoCo-trie have already been fully determined. Thus,
we know which subtries to collapse and for which height ℓ, which may vary from
one subtrie to another. By Eq. (3), the resulting data structure is the space-
optimal one using the selected encoding scheme. The following result, proved in
Appendix B, bounds the space-time efficiency of this approach.

Theorem 1. The CoCo-trie of a given input trie T of height h and N nodes
can be computed in O(Nh) time and O(N) space.

We finally remark that in the above optimisation process we can upper bound
the maximum number ℓ of collapsed levels so that the above time cost becomes
O(N). This is actually the approach we take in our experimental section, where
we bound ℓ for each node v by setting h(v) = w/ log σ in Eq. (3), where w is the
RAM word size in bits (see also Section 3.4). This feature may remind similar
mechanisms adopted in ctrie [10, 45] and ctrie++ [46], where a subtrie is packed
into a machine word. However, our approach is more powerful because the height
of the subtrie to collapse is not chosen in advance and equal over the whole trie,
but it is adaptively chosen on a single-node basis and in a data-aware manner
according to the subtrie topology and the distribution of its edge labels.

3.3 A pool of succinct encoding schemes

Thus far, we represented the m− 1 branching macro-characters civℓ of a macro-
node vℓ via the EF-encoding of the increasing integers civℓ − x, for i = 2, . . . ,m,
where x = c1vℓ is the first branching character we stored explicitly. This sequence
of m − 1 macro-characters is drawn from a universe of size u = cmvℓ − c1vℓ + 1.
Depending on m, u and the values of the branching macro-characters, it may be
beneficial in time, in space, or both, to resort to other kinds of encodings.

On the grounds of this observation and inspired by the hybrid integer-encoding
literature [12, 30, 41, 44], we now equip the CoCo-trie optimisation algorithm of
the previous section with an assortment of encoding mechanisms so that the
compressed representation of every single node can be chosen in a data-aware
manner. This amounts to redefining the bit cost C(vℓ) of storing the macro-
node vℓ so as to consider the cost in bits of other compression schemes besides
EF. Specifically, when evaluating C(vℓ) during the traversal, whichever compres-
sion scheme gives the minimum bit-representation size for all collapsed subtries
descending from v is selected and returned as the result of C(vℓ) (see Eq. (3)).
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For our experimental study of Section 4, we follow [41] and, alongside EF,
we adopt packed encoding (PA), characteristic bitvectors (BV), and dense en-
coding (DE). PA uses a fixed amount log u of bits for each civℓ for a total of
(m− 1) log u bits. BV uses u bits initially set to 0, and then sets to 1 the m− 1
bits corresponding to each civℓ . DE comes into use whenever u = m− 1, i.e. for
representing a complete sequence of consecutive macro-characters; in this case,
no additional bits are required. These encoding schemes allow to implement the
predecessor search easily, as needed by the rank of CoCo-trie (see Section 3.6).

3.4 Squeezing the universe of branching labels

We now describe an optimisation to further decrease the space requirements for
the macro-characters by means of an alphabet-aware encoding. The idea lies in
replacing the encoding function encℓ defined in Eq. (1) with a new one that
depends on the alphabet of the branching macro-characters civℓ

local to each
macro-node vℓ rather than on the global alphabet Σ of the whole trie.

Let Σvℓ ⊆ Σ be the alphabet of symbols occurring in the edge labels of the
collapsed macro-node vℓ. By changing σ = |Σ| in Eq. (1) with σvℓ = |Σvℓ |, we can
squeeze the size of the universe of the branching macro-characters of vℓ from σℓ to
σℓ
vℓ
. This, in turn, reduces the magnitude and the distance between consecutive

integers associated with the branching macro-characters and thus allows a more
effective compression. Also, we reduce the first space term of Eq. (2) to log σℓ

vℓ
.

Clearly, each macro-node vℓ adopting this optimisation must store a map-
ping between Σ and the local alphabet Σvℓ , e.g., via a bitvector B[0, σ−1] where
B[i] = 1 if symbol i appears in Σvℓ .We observe this optimisation requires modify-
ing C(vℓ) to account for both the more efficient macro-characters representation
due to the squeezed universe and the size of the alphabet mapping (i.e. σ bits).

Overall, the time complexity for building the CoCo-trie becomes O(Nh2)
since we cannot compute uℓ incrementally as described in the proof of Theorem 1
(in Appendix B); the space complexity instead does not change, as we do not
store the bitmaps Bℓ[1, σ], but we compute them incrementally while visiting
the subtries as in the proof of Theorem 1.

3.5 On the space-time trade-off

Under some scenarios, it might be of interest to slightly readjust the optimisation
procedure to take into account query performance too, while possibly giving up
the space optimality. To accomplish this space-time trade-off, we rely on the
intuition that collapsing more levels generally improves the query time. As a
matter of fact, the more levels are collapsed, the faster each trie traversal will
be. But, on the other hand, as we collapse more levels, the fan-out of each
macro-node increases and so the time to traverse each individual macro-node
increases as well. However, we experimentally observed that this is not a major
concern, since our compressed encoding of collapsed subtries and our succinct
encoding schemes are in practice extremely efficient to be navigated; thus the
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time reduction given by increasing the number of collapsed levels dominates the
increased access time due to the bigger node fan-out.

With this in mind, we modify the algorithm of Section 3.2 as follows. At each
visited internal node v, we compute C∗(v) as usual and denote by ℓ∗ the value
of ℓ minimising the right-hand side of Eq. (3). Then, we find the largest value
ℓ ∈ {ℓ∗, ℓ∗ +1, . . . , h(v)} that allows to represent the collapsed node adding just
a constant factor α ≥ 0 overhead over the optimal space C∗(v). We observe this
new approach has no impact on the construction complexity. We experiment
with it in Section 4, where α is expressed as a percentage.

3.6 Trie operations

The lookup(P ) in the CoCo-trie begins from the root macro-node rℓ, by com-
puting the integer x = encℓ(P [1, ℓ])−c1rℓ . Then, we seek for x into the increasing
sequence cirℓ , for i = 2, . . . ,m: if the search fails, we return −1; otherwise, we
obtain an index j of x, and proceed with the recursion in the j-th child of the
macro-node. The compressed and indexed macro-node encoding guarantees the
search for x is very efficient. We iteratively consume multiple characters at once
from the pattern P as we descend the CoCo-trie downwards via LOUDS. When
P is exhausted, we return the unique LOUDS index of the node we reach.

As for rank(P ), we switch to the DFUDS encoding for the trie topology as
it allows us to compute the rank of a leaf efficiently, takes the same space of
LOUDS, and is still efficient in navigating the trie downwards [39, §8.3]. At each
macro-node vℓ, we seek for the largest index j such that cjvℓ ≤ x, and we keep
searching recursively into the j-th child of rℓ. Again, the EF and hybrid schemes
for the cjvℓs result in fast branching operations. If P is exhausted at an internal
node, the navigation proceeds downwards until the leftmost descendant of that
node. In any case, we eventually reach a leaf node and return its rank.

4 Experiments

We run our experiments on a machine equipped with a 2.30 GHz Intel Xeon Plat-
inum 8260M CPU and 384 GiB of RAM, running Ubuntu 20.04.3. We compile
our codebase using g++11.1 and the C++-20 language standard.

Datasets. We aimed at choosing very diverse datasets in terms of sources (such
as the Web, bioinformatics, and databases) and features (such as the number n
of strings, total number D of characters, alphabet size σ, and average/maximum
length of the lcp between consecutive sorted strings) to depict a broader spec-
trum of the performances of the tested string dictionaries. We preprocess each
dataset to keep, for each string s, the shortest prefix of s that distinguishes it
from all the other strings in the dataset. It is well known that, for any trie-based
structure, the remaining suffixes can be concatenated into a separate array and
efficiently retrieved when needed [39, §8.5.3]. Table 1 shows the datasets and
their characteristics after preprocessing.
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Table 1. Datasets characteristics.

Name Description n/106 D/106
Avg
lcp

Avg
length

Max
length

σ

url URLs crawled from the web [13] 40.5 2 713.5 64.1 66.9 1 990 94
xml rows of an XML dump of dblp [3] 2.9 107.8 34.4 36.5 248 95
protein different sequences of amino acids [3] 2.9 155.6 36.7 53.3 16 191 26
dna unique 12-mer from a DNA seq. [3] 13.7 164.5 10.5 11.9 12 15
tpcds-id customers ids in TPC-DS-3TB [38] 30.0 446.4 13.4 14.8 15 16

State-of-the-art competitors. We consider as competitors of our CoCo-trie the
following static string dictionaries implementations because they are either the
state of the art or offer efficient approaches to compact trie representations:

CART: a compact version of ART [32] obtained by constructing a plain ART
and converting it to a static version [1, 49,50].

PDT: the Centroid Path Decomposed Trie [24]. We experiment with both the
vbyte version that encodes the labels of the edges with vbyte [47], and the
csp version that adds another layer of compression on top of the edge labels.

FST: the Fast Succinct Trie [50]. We use a slightly-modified code [2] that solves
lookup queries rather than range query filtering. We show the full space-time
performance of FST by varying its parameter R as 2i for i = 0, . . . , 10.

Apart from the above static data structures, we also tested ART [32] and
ctrie++ [46] as representative of the dynamic approaches. In our figures we do
not show ctrie++ since its space usage on our datasets is from 2.8 to 6.2× larger
than ART, which in turn uses up to one order of magnitude more space than the
other tested solutions, and since it is faster than ART only on url (by 14%).

We do not experiment with Masstree [34] because [11] shows it uses from
1.8 to 3× more space than ART. We also do not experiment with HOT [11]
because their implementation only supports strings shorter than 256, while our
datasets contain much longer strings. Finally, we do not experiment with the
implementation provided in [14, 35] as we were unable to run its codebase in a
fair environment due to some old software dependencies and incompatibilities
with modern compilers.

Query workloads. Given that our competitors do not implement rank (despite
their design does support it), we decided to measure the performance of lookup.
We can reasonably expect that rank would perform similarly to lookup, because
of the way the former can be derived from the latter in trie-based (rather than
hash-based) data structures, as the ones we experimentally test here.

Given a dataset of n strings, we measure the query time by averaging the per-
formance of 3 repetitions of a batch of size n, where half of the strings are taken
from the datasets and half are generated randomly. To generate each of these
latter strings, we (i) extract a randomly-chosen string belonging to the dataset
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Fig. 3. Normalised frequency of macro-nodes collapsing subtries having ℓ levels.

and truncate it to the average lcp of the entire dataset, and (ii) append a ran-
dom string whose length matches the average length of the strings in the dataset.
This way, the queries we generate mimic a fair query workload that guarantees
a balance between existent and not existent queried strings, and for the latter
that the traversal does not stop at the very first steps because of a mismatch.

Experimental results. Figure 3 shows our first experimental result: the number of
macro-nodes collapsing a certain amount of levels forms a non-trivial distribution
whose shape differs from dataset to dataset. This provides a clear answer to both
questions Q2 and Q3 in Section 3: the number of levels to be collapsed in a
subtrie greatly depends on the strings the trie is built on, and it must be chosen
locally. Therefore, the data-aware approach to subtrie compaction implemented
in our CoCo-trie optimiser is essential to attain the most from these features.

In particular, on url and xml, the CoCo-trie optimiser selects many times
the lowest possible values of ℓ (each horizontal axis ranges from ℓ = 1 to the
largest ℓ over all macro-nodes vℓ). For protein, instead, the CoCo-trie optimiser
selects high values of ℓ (very often ℓ ≈ 30) so that, in the end, the distribution
resembles a Gaussian one. On dna, CoCo-trie optimiser collapses at most ℓ = 7
levels at a time and selects ℓ = 4 for 67% of the times. The results on tpcds-id

are also of interest for their simplicity: due to the regularity of the dataset, the
CoCo-trie optimiser here creates a macro-node for the root that collapses ℓ = 11
levels, and each of its 4096 children collapses ℓ = 4 levels.

Figure 4 shows the results of the space and time performance of CoCo-trie
and the five competitors.

Firstly, we observe that ART and CART, though fast, are generally very
space-demanding (note the vertical axis is logarithmic). On url, they are also
slower due to their large size and the high average lcp among the dictionary
strings, which causes longer trie traversals and thus more cache misses.

FST is dominated in space and time performance by our CoCo-trie (and also
by other data structures) on all the datasets. This is especially evident on url,
xml, and protein. We argue that this is due to the high average lcp of these
datasets that require FST to perform longer trie traversals that proceed one
character at a time (indeed, FST does not compact unary paths).

PDT shows overall a good space-time performance, with the exception of dna
and tpcds-id, for which the average height of the PDT nodes is 6.0 and 8.7,
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respectively. The average height of the macro-nodes in the CoCo-trie (see the
α = 0% configuration in Figure 4) is instead 3.5 and 4.0, thus requiring nearly
half accesses to nodes, on average. Indeed, CoCo-trie is 2.3× faster and 3× more
succinct than PDT on dna, and it is 2.6× faster and 2.4× more succinct than
PDT on tpcds-id. This means that, on these two datasets, the approach of
exploiting the small local alphabet at each macro-node is particularly effective.
On the rest of the datasets, CoCo-trie always has some configuration on the
Pareto frontier of PDT, thus offering other competitive space-time trade-offs.

In summary, with respect to the highly-engineered competitors we test on
the diverse five datasets, the CoCo-trie results space-time efficient, robust and
flexible: in fact, it significantly dominates the space-time performance of all com-
petitors on dna and tpcds-id; it is on the Pareto frontier of the best competitors
over url and xml; and, lastly, it is very close to the Pareto frontier for protein.

5 Conclusions and Future Work

We have introduced a new design of compressed string dictionaries that collapses
and succinctly encodes properly-chosen subtries via novel data-aware encoding of
(possibly long) edge labels and a space optimisation procedure. The experimental
results over a variety of datasets and highly-engineered competitors suggest that
our CoCo-trie does advance the state of the art of string dictionaries.

The novel design scheme on which CoCo-trie hinges, paves the way to further
new approaches for the multicriteria optimisation of trie data structures that
take into account possibly other encoding schemes and different multi-objective
functions (e.g., over time, space, energy usage, etc.).
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A Calculations for the motivating example of Section 2

We first recall that the γ-code of a positive integer x consists of a number of
0s equal to the number of bits minus one of the binary representation of x,
followed by that binary representation, e.g. γ(6) = 00 110. Thus, γ(x) takes
2⌊log2 x⌋+ 1 bits.

The case of trie A. The succinct representation of the edge labels in A takes
3 + 3 + 3 = 9 bits. In fact, the encoding of the edge labels {A,C} of the root is
enc(A) γ(C − A) = 00 γ(1) = 001, then the encoding of the edge labels {G,T}
of the first node at the second level is enc(G) γ(G − T) = 10 γ(1) = 101, and
finally the encoding of the edge labels {A,C} (again) of the second node at the
second level is enc(A) γ(C−A) = 001.

If instead, we collapse the two levels of A in the root of Ac, this root ob-
tains four children whose edge labels are {AG,AT,CA,CC}, and their succinct
representation takes 7 bits. We indeed encode the first branching macro-symbol
enc(AG) = 0010 as it is, followed by the encoding of the other three branching
macro-symbols as: γ(AT − AG) = γ(0011 − 0010) = γ(1) = 1, γ(CA − AT) =
γ(0100− 0011) = γ(1) = 1, and γ(CC− CA) = γ(0101− 0100) = γ(1) = 1.

Thus in terms of space cost, A is worse than Ac. This result is even more
evident when accounting for the space cost for the topology, simply because A
has more nodes than Ac. We conclude that, under this setting, it is better to
collapse the trie and keep Ac.

The case of trie B. Surprisingly, one comes to the opposite conclusion with B,
despite having the same topology of A. Here, the larger alphabet together with
the different distribution of the edge labels changes the optimal choice.

The succinct representation of the edge labels in B takes at most 5b+1 bits.
We can indeed represent the edge labels {A, ξ} of the root with enc(A) γ(|Σ|−1)
which takes at most 3b − 1 bits; the root gets followed by the encoding of the
edge labels {A, ξ} of the first node at the second level, namely enc(A) γ(1) which
takes b+1 bits, and by the encoding of the edge labels {ξ′, ξ} of the second node
at the second level, which is enc(ξ′) γ(1) which takes b+ 1 bits.

Conversely, the succinct representation of Bc may take up to 6b−1 bits, since
we encode AA with 2b bits set to 0, followed by γ(AC− AA) = γ(1) = 1, then
by γ(ξξ′ −AC) = γ(01 . . . 101) (which takes 4b− 3 bits, because the γ-encoded
number consists of 2b− 1 bits), and finally by γ(ξξ − ξξ′) = γ(1) = 1.

https://doi.org/10.1145/2882903.2915222
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Hence, differently from the example on A, here it is better not to collapse
B because its succinct encoding takes b − 2 bits less than the one of Bc, and b
can make this gap arbitrarily large, up to the point that the cost of representing
their topology becomes negligible.

B Proof of Theorem 1

Starting from a node v of height h(v), we can compute C(vℓ) for any ℓ =
1, 2, . . . , h(v) by obtaining incrementally all the optimisation parameters uℓ and
mℓ from the already (inductively) known uℓ−1 and mℓ−1.

To compute the universe size uℓ for vℓ we need to determine the encℓ-code of
the leftmost and rightmost length-ℓ strings descending from v, and these can be
computed by extending the respective encℓ−1-codes computed at the previous
step with one character, in constant time. This costs overallO(Nh) time because,
for each node, we have to visit the leftmost and rightmost branching strings that
are of length at most h.

To compute mℓ (i.e. the number of children of the collapsed macro-node vℓ),
we need to visit once the whole subtrie rooted at v. Knowing mℓ−1, we add to
it the number of leaves at the ℓ-th level. Performing for every node v a complete
visit of its whole subtrie costs overall O(Nh) time: indeed, each of the N nodes
has at most h different ancestors and thus belongs to at most h different subtries,
thereby getting visited at most h times.

For every node v we maintain just the optimal C∗-cost, thus the required
space amounts to O(N).
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